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Abstract—Privacy concerns have reached the mainstream

discourse in society and already had a significant impact on
research and technology. Cryptocurrencies have adopted many
transaction-level privacy mechanisms to provide privacy in the
persisted blockchain. Unfortunately, these are insufficient as
network-level attacks can also provide privacy-breaking insights
into transactions and their origins. We proposed k-Dining Cryp-
tographers and topological methods as a basis for a privacy-
preserving broadcast protocol. In this work, we present 3P3,
a three-phase privacy-preserving broadcast protocol. We trans-
formed our approach to a stronger attacker model so that it
provides strong base privacy against global attackers and ma-
licious nodes and additional privacy against common attackers,
e.g., botnets. Further, we provide mechanisms to transmit almost
arbitrarily long messages, reduce overhead for zero-message
rounds, a more extensive analysis, and simulation results of our
enhanced protocol. Our simulations show the dissemination of
a message to all nodes within 1000ms in 99.9% of instances.
These results hold for all network sizes, including networks of up
to 10,000 participants. Bandwidth estimates also show practical
applicability with usual group sizes of 10 to 30 participants.

I. INTRODUCTION

Cryptocurrencies and blockchains have been popular for
years in research and industry. This phenomenon went as far
as many people of varying technical proficiency investing their
money in cryptocurrencies hosted by blockchains. Researchers
noticed that many blockchains contained sensitive data of
their users in unprotected and unprotectable forms. Such data
contains information on purchasing behaviour, credit balances,
and how the money was acquired [1], [2].

Many new cryptographic applications came to life to protect
this sensitive information. Approaches to achieve unlinkable
payments include the use of ring signatures [3]–[5] and zero-
knowledge proofs [6], [7]. Even already existing blockchains
like Bitcoin were augmented with privacy-enhancing mecha-
nisms [8], [9].

However, these systems focus solely on privacy on the
persisted blockchain, as every user can acquire and inspect this
data. This publicly available data has been intensively inves-
tigated even for strong privacy-protected blockchains such as
zcash [10]. Some researchers investigated the dissemination of
transactions within the peer-to-peer network [11], [12]. They
recognised a lack of network privacy for blockchain systems,
leading to the development of protocols to protect the network-
layer participants. Dandelion [13] tackles some of the issues
on the network layer for Bitcoin. Monero [3] adopted a variant
of the onion routing protocol I2P [14] called Kovri.

We proposed a design for a privacy protocol [15] with
parameters making it flexible for various environments. Our

previous proposal lacked a strong attacker model and per-
formance and parameter evaluations. Building on the ideas
of this previous proposal, we propose 3P3, a three-phase
privacy-preserving broadcast protocol. Compared to our pre-
vious publication, we provide several improvements, as well
as additional contributions:
• Base privacy against strong attackers even in the presence

of malicious entities.
• Enhanced protection against common attackers.
• Adaptable message lengths for transmission.
• Reduced overhead for zero-message rounds.
• Comparative evaluation showing practical performance in

real-world scenarios.
Section II introduces the necessary background information
about this paper, while Section III discusses related work.
Section IV describes the 3P3 protocol for a privacy-preserving
broadcast in detail. In Section V, we show that our protocol
is robust in the presence of malicious nodes. In Section VI,
we discuss the privacy properties of our protocol. Lastly,
Section VII provides a performance evaluation of our protocol.

II. BACKGROUND

In this section, we describe the expected scenario, i.e.
blockchains, our assumptions and requirements for the net-
work. All relevant notation is summarized in Table I.

Term Meaning

x =∼ U(a, b) Chose a random real number uniformly with x ∈ [a, b].
i =∼ U{a, b} Chose a random integer uniformly with a ≤ i ≤ b.
E =∼ Un{S} Select n distinct elements from S uniformly at random.
G = (E, V ) Graph G consisting of a set of vertices V and edges E.

G All participants of a group.
N The set of neighbours chosen in our modified diffusion.

η = |N | Size of N .
H(x) Function to compute the hash of element x.

process(m) Call application logic to process the given message m.
Cr(x). Commitment on value x, blinded by random factor r.
{X}i Value X encrypted under the public key of i.

TABLE I
NOTATION USED IN THIS PAPER.

A. Dining Cryptographer Networks

The base protocol of the dining cryptographer network
(DCN) by Chaum [16] allows for unconditional sender un-
traceability. In its more general form, the protocol allows a
single participant to share a message in an unlinkable way.
Given a fixed-length message, e.g., by a modulus for modular
arithmetic, all participants i decide on their message mi to



share. If participants do not intend to send a message, they
will prepare mi = 0. Only one participant is allowed to share
a message mi 6= 0. Each participant i splits their message
in random slices, so that mi =

∑
j 6=i si,j and shares si,j

with participant j. All participants combine every slice they
receive and share the combination with all other participants.
Therefore, all participants will receive an aggregate of all
slices produced by every other participant and can calculate
the aggregation of all messages, which corresponds to

∑
imi.

Unfortunately, DCNs do not scale well with the number of
participants and can be prevented from making progress by
malicious participants. Von Ahn et al. [17] built upon other
improvments [18] and addresses these two weaknesses in their
modification. They apply the dining cryptographer protocol
to groups of a maximum size k << n instead of the whole
network. Further, they designate a set of message slots to trans-
mit multiple messages at once. Lastly, they use commitments
in cooperation with a blame protocol to identify malicious
actors after detecting collisions. These additions result in a
protocol with more overhead compared to basic DCNs but
provide fairness and robustness in malicious environments.
The protocol by von Ahn et al. is a point-to-point protocol: a
participant sends the message and an identifier for the target
group.

B. Network

The protocol we describe requires an underlying peer-to-
peer network. We assume the network is equivalent to an
undirected, connected graph with no loops and no multiple
edges. Further, we assume that the network remains connected,
even if all malicious or faulty nodes are removed. Otherwise,
the network could be partitioned by malicious nodes, and our
protocol would be unable to reach all nodes. Known properties
of connectedness [19, Ch. 4] can consider a given rate of
attackers for network creation; therefore, our assumption is
warranted and not a substantial restriction on the underlying
network.

Channels between nodes should be authenticated, encrypted
and integrity protected. Modern cryptographic schemes, e.g.,
via mTLS, can easily realise such a channel. Further, we
require a public-private key pair for encryption with shared
public keys among the group as well as an agreed-upon
ordering within the group, e.g., ordered by public keys.

We assume the network underlying our protocol takes care
of essential network functions and management operations,
e.g., re-establishing interrupted connections, group join and
leave operations, authentication and encryptions. Connections
within groups should only be used for group communication,
i.e., the DCN. This restriction prevents topology learning
attacks on the groups, i.e., who belongs to a given group.

III. RELATED WORK

While we focus on the scenario of blockchain transactions,
there may be other application domains for 3P3.

A. Dandelion
Dandelion [13] proposes a two-phase protocol for statistical

spreading. Phase 1 spreads the transaction along a line graph.
Each node along the line graph has a fixed probability of
starting the second phase. Phase 2 uses a flood and prune
broadcast to ensure delivery to all nodes. For an attacker to
detect the originator with reasonable certainty, he needs to
be the first node receiving the message from the originator.
With known topology, many attackers could further improve
estimates without being the first recipient.

Dandelion++ [20] is an improvement over the initial version.
The iteration covers enhanced defences against graph learning
and graph construction attacks, as well as intersection, selec-
tive non-participation, and partial deployment attacks.

B. Adaptive Diffusion
Adaptive diffusion [21] breaks the symmetry present in

regular flood and prune broadcast by creating a virtual source
token. The owner of the virtual source token either spreads
the message or forwards the virtual source token. If the token
is transferred, the new owner becomes the centre by balancing
the tree. Although this approach is for cycle-free networks, it
works well even for general networks [21]. Adaptive diffusion
does not guarantee delivery of messages to all nodes, which
can lead to unfairness in the context of blockchains. Lastly,
a suitably powerful attacker can subvert the protocol by
connecting to a large number of nodes, as a node informs
all neighbours of new messages.

C. Dissent
Dissent [22], [23] provides high privacy guarantees with

a small number of core servers as anonymity providers. It
uses a round-based multi-phase protocol. Every participant
announces the length of the message they want to transmit
to enable variable-sized messages. The length announcements
stay anonymous using a secure random shuffle of layer-wise
encrypted values.

The last participant publishes the shuffled lengths. To trans-
mit the data, the participants use a form of a DCN. The
announcement phase [22] scales linearly in the number of
group members, e.g., a group size of 8 to 12 participants incurs
a latency of around 30 seconds.

D. Onion Routing Protocols
Onion routing protocols, e.g., Tor [24], provide a point-to-

point communication abstraction. The general concept applies
a set of nodes to chain traffic via these nodes. Each package
sent through this chain is encrypted with as many layers
as there are nodes. Each node removes one layer of this
encryption and forwards it to the next node. Garlic routing,
e.g., Kovri and I2P, is a variant of onion routing, bundling
multiple messages together.

Onion routing generally does not consider a global passive
attacker listening to the connections, but recent wide-area
surveillance of the internet makes them seem realistic. As Tor
provides a socket proxy abstraction, it can be used in addition
to other systems as a defence-in-depth approach.



E. Others

There are many other privacy-oriented systems besides the
ones we presented here. These include systems for different
use cases such as voice-over-IP with Herd [25], as well
as point-to-point communication schemes such as Rac [26].
While these systems provide valuable building blocks, e.g.,
cover traffic, and solutions to existing problems, we did not
apply them for various reasons, e.g., high network load and
increased latency.

IV. 3P3: PRIVACY PREVSERVING BROADCAST PROTOCOL

3P3 consists of three phases: a modified version of a DCN
for strong privacy, a modified adaptive diffusion, and a flood
and prune broadcast to ensure delivery, cf. Figure 1.

DCN η-AD F&P

Fig. 1. Overview of the three phases of 3P3. A DCN, our modified η-diffusion
(η-AD) and the final flood and prune (F&P) phase.

A. Phase I: Dining Cryptographer Network

In the first phase, we perform a preliminary round to estab-
lish all desired message lengths, similar to Dissent [23], using
the algorithm by von Ahn et al. [17], shown by Algorithms 1
to 4. The actual messages are sent in a separate DC round.

Algorithm 1 Preparation phase of the first DC instance.
Input: Message m
Environment: Group G with |G| = k, the executing node
gself , public keys of group participants, slot length `
r =∼ U{0, 216 − 1}
Slot=∼ U{0, 2k − 1}
K = {Ki = {∼ U{0, 2256 − 1}}i}

X[i] =

{
(r, length(m),K) if i = Slot
(0, 0, 0) else

for t ∈ {1 . . . 2k} do

sself,i[t] =

{
∼ U{0, 2` − 1} if i < k

X[t]⊕
⊕

j∈{1...k−1} sself,j if i = k

rself,i[t] =∼ U{0, 2` − 1}
Compute Cself,i[t] = Crself,i[t](sself,i[t])

end for
Broadcast {Cself,i[t] : i ∈ {1 . . . k}, t ∈ {1 . . . 2k}}

The random identifiers rself are required for a node to
identify the slot of their message in the presence of multiple
identical lengths. The birthday paradox formula provides a

rough boundary, given a collision probability p and group size
k:

sizeof(r) ≥ log2

(
1

1− (1− p)
2

k(k−1)

)
.

For a collision probability of 1%, we can tolerate 36
participants using 16 bits per random identifier. Collisions
should already be rare due to requiring the same length. Most
applications should function well with these values.

Algorithm 2 Sharing round of the DCN.
Input: ∀i ∈ {1 . . . k} : sself,i, rself,i of algorithm 1
Environment: Group G, the executing node gself , commit-

ments Ci,j [t]
for gi ∈ G \ {gself} do

Send {(rself,i[t], sself,i[t]) : t ∈ {1 . . . 2k}} to gi : i 6=
self
Receiving node gi validates that Crself,i[t](sself,i[t]) =
Cself,i[t]

end for

Algorithm 3 Aggregation sharing phase of the DCN.
Input: ∀i ∈ {1 . . . k} : (rj,self [t], sj,self [t]) transmitted by

others in algorithm 2
Environment: Group G, the executing node gself , commit-

ments Ci,j [t]
Collect all (rj,self [t], sj,self [t]) pairs, sent to gself
Rself [t] =

∑
j rj,self [t]

Sself [t] =
⊕

j sj,self [t]
Broadcast {(Rself [t], Sself [t]) : t ∈ {1 . . . 2k}}
Everyone checks CRself [t](Sself [t]) =

∏
j Cj,self [t]

Algorithm 4 Result computation of the DCN.
Input: ∀i ∈ {1 . . . k} : (Rj [t], Sj [t]) broadcasted by others in

algorithm 3
Environment: Group G, the executing node gself , commit-

ments Ci,j [t]
Collect all (Rj [t], sj [t]) pairs, sent to gself
R[t] =

∑
j Rj [t]

X[t] =
⊕

j Sj [t]
Everyone checks CR[t](X[t]) =

∏
i,j Ci,j [t]

return X[t]

For a fixed group size of k participants, we prepare 2k slots
for message lengths. This number is to ensure a probability
of delivery greater than 1

2 even when all participants send a
message. All slots consist of a random identifier r, a message
length ` and a set of k values Ki, encrypted to each participant
i. When a participant i wants to disseminate a message mi,
they chose a slot and an identifier at random. Once this
information is shared through the DCN, all nodes prepare
a round with message length 2

∑
i `i, i.e., the sum of all



provided lengths. The preparation is shown in Algorithm 5,
while the transmission is identical to Algorithms 2 to 4, just
based on the output of Algorithm 5.

Algorithm 5 Preparation phase of the second DC instance.
Input: Message m, r from algorithm 1, X from algorithm 4
Environment: Group G with |G| = k, executing node gself

for t ∈ {1 . . . 2k} do
(r[t], `[t],K[t]) = X[t]

Y [t] =

{
m if r[t] = r

0 else

sself,i[t] =

{
∼ U{0, 2` − 1} if i < k

Y [t]⊕
⊕

j∈{1...k−1} sself,j if i = k

rself,i[t] = PRNGK[T][self](∼ U{0, 2` − 1})
Compute Cself,i[t] = Crself,i[t](sself,i[t])

end for
Broadcast {Cself,i[t] : i ∈ {1 . . . k}, t ∈ {1 . . . 2k}}

Any node that submitted a length ` 6= 0 can find their
designated position by their position in the message slot.
All other message parts are set to zero. The commitment
aggregation to zero for these message parts needs to use the
provided random value from round one. Using these prepared
values, allows the author to blame any node that does not
send a zero message in the author’s slot. The messages are
summarised in Table II.

If all lengths are zero, the second round can be skipped.
Valid lengths should be restricted to prevent a denial-of-service
attack, e.g., 16 bits for the use case of blockchains. While
this leaks when something is sent, that is not a problem, as
broadcasts could be traced to this group by a global passive
attacker.

Round Transmitted Message Length

1. [(r1, `1,K1), . . . , (r2k, `2k,K2k)] 2k(sizeof(r + `+K))
2. [m1, . . . ,mi] 2

∑
i length(mi)

TABLE II
PHASE 1 MESSAGES TRANSMITTING MESSAGES m1 THROUGH mi .

To assign responsibility to start the next round without
communication, the node which has the node identifier closest
to the random identifier should start the next round. Nodes sort
the node identifiers and split the available space of values for
random identifiers uniformly to prevent an uneven workload.

B. Phase II: Adaptive Diffusion

The second phase uses adaptive diffusion [21], which con-
sists of two parts, the spreading mechanism and the virtual
source subprotocol. The virtual source should forward mes-
sages so that all nodes of a given distance from them either
all received the message or all did not receive the message.

If a node, which is not the virtual source, receives a message
for the first time, they select η neighbours. Further, they store
the node that sent the original message to prevent unwanted

extension of the spreading sub-graph over cross-connections.
Whenever they receive the same message again, they will
forward the message to the selected neighbours. As adaptive
diffusion was originally constructed for contact networks,
we transformed the protocol slightly as a network protocol,
see Algorithm 6 for the virtual source subprotocol.

Algorithm 6 Virtual source handling in η-Adaptive Diffusion.
Input: Previous virtual source vp, Round identifier r, current

step s, counter h
Environment: Neighbours N with |N | = η + 1, Depth d

for v ∈ N \ {vp} do
Send m to v
if s+ 1 ≤ d and s > 1 then

Send m to v
end if

end for
h = h+ 1
s = s+ 2
while s ≤ d do
s = s+ 1
if p(s, h) ≤∼ U(0, 1) then

for v ∈ N do
Send m to v

end for
else
vnext =∼ U{N \ {vp}}
Send (vself , s, h, r) to vnext, to call Algorithm 6
break

end if
end while

The virtual source token is forwarded with probability
p(s, h) based on the expected degree of the network, the
current step s and amount of forwards h. The function to
compute the probability is stated [21] as:

p(s, h) =

{ s−2h+2
s+2 if η = 2,

(η−1)
s
2
−h+1−1

(η−1)
s
2
+1−1)

else.

To initiate the protocol, the initiating node v chooses a
random neighbour. Then v sends the message m and the
virtual source token transmission message (v, s = 1, h =
1, r = H(m)), prompting the execution of Algorithm 6. Every
virtual source should monitor the network for the progress
of the protocol. A timeout will trigger retransmission to a
different participant, as the previously selected might refuse
cooperation or be unreachable. The timeout will extend on
messages received through the protocol but only stop when
receiving a flood and prune message.

C. Phase III: Flood and Prune Broadcast

The last virtual source initiates a flood and prune broadcast
to ensure delivery to all nodes. When a node receives a
message for the first time, it forwards the message to all
neighbours, excluding the node which sent the message.



V. SECURITY: FUNCTIONALITY UNDER ATTACK

For the protocol to be considered secure and correct, all
non-malicious nodes should receive a disseminated message.
It is sufficient to show the last phase fulfils the requirement,
and that the phase will be reached to show the desired property.
Therefore, we work backwards from the last phase.

A. Attacker Model

The base model for the network, outlined in Section II,
especially includes a connected graph after removing all mali-
cious nodes from the network. Malicious nodes are interested
in preventing a message from being broadcast. They are
considered successful if some honest nodes do not receive
the message, even though the network fulfils the requirements.
Attackers are computationally limited, i.e., they are not able to
break cryptographic primitives. As channels and transactions
use strong cryptographic primitives, the restriction results in
authenticated and secure channels and messages. Attackers act
as participants of the network, not as internet service providers,
hardware vendors or other outside entities. We do not consider
vulnerabilities of implementations or general systems security.

B. Phase III: Flood and Prune Broadcast

When removing malicious nodes, the network remains a
connected graph, based on the network requirements. There-
fore, there exists a path between any node and the initiator
of the flood and prune broadcast. The communication can be
reduced to any two neighbouring nodes, with one receiving
the message. The node will forward it to the neighbour, prop-
agating along all available paths. This process is unaffected
by non-participation or message injection. Therefore, we only
require reaching the flood and prune stage and having an
honest initiator to reach all nodes.

C. Phase II: Diffusion

We restrict the discussion to the virtual source sub-protocol.
Reaching Phase 3 only hinges on this sub-protocol, so this
restriction is warranted.

Let vc be the current virtual source node and vp the
previous virtual source node. We can separate two cases.
Either, vc is fully uncooperative, i.e., sends no correct message.
Alternatively, they are partly uncooperative by only sending
correct messages back to vp.

Fully uncooperative: vp will not detect any correct mes-
sages. Therefore, the timeout of vp will trigger, marking vc as
failed and continue the protocol itself. As a connected graph
is available, even after removing all malicious or failed nodes,
the protocol can continue eventually.

Partially uncooperative: vp will not be able to distinguish
this case from a fully functional run of the protocol. This
situation is the case for all previous virtual source nodes.
Either, the attacker switches to a flood and prune broadcast,
but only forwarding it towards vp or the attacker will send
infinite diffusion messages. In the case of the flood and prune
broadcast, the protocol is successful, due to the connected net-
work. Further, vp determines a maximum bound of messages

they should observe, based on the state of h they received.
A malicious node can therefore not send endless messages
towards vp to stall progress towards Phase 3.

Given this reselection, the last phase will be initiated if there
is any available honest virtual source. Therefore, to reach all
nodes, we only require reaching the diffusion stage and having
an honest initiator of the diffusion stage.

D. Phase I: Dining Cryptographer Network

The first instance of the DCN corresponds to the protocol
by von Ahn et al. [17] with m = (r, `,K). Therefore,
round one exhibits the same correctness, robustness, fairness
and anonymity as the von Ahn protocol, which is secure
in the discrete logarithm model. Whereby robustness means
either the protocol succeeds, or an attacker is exposed, so the
protocol will eventually succeed for finite attackers.

On successful transmission of the second instance, all par-
ticipants will receive [m1, . . . ,mi]. This can easily be verified:

Yresult[t]
Alg. 4
=

⊕
j

Sj [t]
Alg. 3
=

⊕
j

⊕
h

sh,j [t]

=
⊕
h

⊕
j

sh,j [t]
Alg. 5
=

⊕
h

sh,k
⊕

j∈{1...k−1}

sk,j [t]

=
⊕
h

(Y [t]⊕
⊕

j∈{1...k−1}

sk,j [t])
⊕

j∈{1...k−1}

sk,j [t]

=
⊕
h

Y [t] = [m1, . . . ,mi].

The commitments of round two are created using a PRNG
seeded with Ki from the previous instance. If a collision
occurs, the legitimate message sender can validate the com-
mitments as zero commitments, as they know r = Ki and
the commitment. If a commitment does not reveal to be zero,
the legitimate message sender will inject a blame message
in the next protocol instance. The blame replaces the message
identifiers r, `,K and contains the seed, the blamed participant
as well as a round identifier and message identifier. Other
participants can verify the seed and that the commitment is
not zero, and exclude the attacker. An honest participant can
not be blamed without breaking the security assumption of the
underlying commitments.

The case of non-cooperation by participants can be han-
dled similar to von Ahn et al. [17] by sharing encrypted
instances of all {(sself,j , rself,j)}j pairs with every participant,
allowing for reconstruction of the contents with selective
non-cooperation. This creates considerable additional load, so
forming of a completely new group might be more economical.

As all sub-protocols are robust, we conclude 3P3 to either
succeed or remove an attacker and therefore to be robust in
its entirety.

E. Further Security Concerns

Besides the basic function of the protocol, we would like
to note some security concerns. We do not consider confiden-
tiality, as we are dealing with a broadcast protocol. Similarly,



to keep messages smaller by default, we have no additional
integrity checks, especially as these are often included in
application protocols. Any application that requires integrity
or confidentiality needs to provide application layer checks.

Lastly, a node holding the virtual source token can decide
to start the last phase of the protocol early. Nodes, beside
previous virtual source nodes, can not distinguish this situation
from a valid phase switch, but the privacy impact and incentive
for this attack are low.

VI. PRIVACY

For the sake of privacy discussion, we will use the notion
of k-anonymity. Hereby k is the number of participants
indistinguishable from the true originator, which optimally
would be k = |participants| − |attackers|.

A. Independence of DCN and Diffusion

Further protocol steps should not provide further insights
into the group to keep the privacy guarantees of the DCN.
The second phase is started by transmission of the message
m and the elements v, s = 1, h = 1, r = H(m). The elements
s = 1, h = 1 identify that a new diffusion run is started
but are independent of any contents, i.e., they are fixed for
all possible runs. As v identifies the sender, v must be part of
the originating DCN. Within the network, v was chosen by the
originator, indirectly through a random identifier. This random
identifier is not transmitted further, so no clues about group
participants can be inferred. Therefore, the DCN can keep its
privacy guarantees intact.

B. Global Passive Attacker

Revelations over recent years have shown that service
providers and intelligence agencies across the world are col-
lecting and analysing information, coming reasonably close to
a global passive attacker. If such an observer could collect
all slices si,j of a participant, they could recompute the
original message sent by the participant. This is prevented by
authenticated encrypted channels between participants.

To prevent traffic correlation, DCNs requires all participants
to send the same amount of data, not just the sender. While
a global passive attacker can detect the communicating DC
groups and the broadcast message, they can not identify the
originator within the group [16], [17]. Against this attacker,
phase one provides k = |group|-anonymity.

C. Dining Cryptographer Network Insider

To improve the detection of DC group participants, an
attacker has to be part of the group. For β attackers within the
group, DCN-based communication trivially provides (k− β)-
anonymity. The anonymity guarantees depend on the group
formation mechanism [17]. Current strategies of a random
selection of participants with an assumed attacker probability
p require group sizes of 2k

1−p for k-anonymity with high
probability [17]. These bounds depend on the attacker proba-
bility distribution. External trust information during the group
formation could improve the probability distribution.

D. Honest but Curious Botnet-like Attacker

The previous sections covered attack vectors against the
DCN, i.e., an attacker on the outside and attackers on the
inside. Therefore, we will focus on the privacy provided within
the diffusion phase, as an improvement over the guarantees by
the DCN.

An honest but curious attack could be performed by a single
computer or a deployed botnet. The attackers connect to as
many participants as possible and collect every message they
observe. This behaviour can be seen often, e.g., by research
groups [27] or information crawlers.

The original analysis of Fanti et al. [21] for adaptive diffu-
sion gives a worst-case privacy estimate, as our modifications
only limit the exposure to possible attackers. Based on this,
we provide the argument for improved privacy over the DCN.

If an attacker were to receive the virtual source token, they
could easily compute a candidate pool of dh candidates, with
h the current depth of the diffusion phase. For most sensible
configurations, it holds for h ≥ 0 that dh > groupsize
improving the privacy of previous steps. Attackers with a pene-
tration p = |attackers|

n of the network, will receive approximately
p×|broadcasts| of all first virtual source messages. This group
increases further for participants of the spreading protocol,
which never receive a virtual source message.

Consider two models: An attacker who creates a single con-
nection to all nodes and distributed attackers with a network
penetration of p = | attackers |

n but normal behaviour. Let X
be the random variable modelling the number of attackers
chosen for a run of the spread sub-protocol. The probability
P (X ≥ 1) of having at least one attacker included and the
expected number of attackers per node E(X) are η

d for a single
attacker. For the distributed attack P (X ≥ 1) = 1− (1− p)η
and E(X)ηp. At step t the expected amount of attackers hit
are

Et(X) = E(X)

t−1∑
i=1

ηi = E(X)(
ηt − 1

η − 1
− 1).

This provides an estimation of the privacy impact of the
parameter η.

VII. PERFORMANCE

For the bandwidth usage during operation, we take a look
at the message complexity, especially for the group phase. To
assess the parameters and overall performance of our system,
we used a simulator and parameter-dependent evaluations.

A. Group Size and Bandwidth

The most performance-critical part of our system is phase
one. Due to the nature of DCNs, we expect the group phase to
mostly scale with bandwidth with little influence by latency.

Given a commitment and randomness of 32 Bytes size, e.g.,
using Pedersen commitments [28], we can commit on 31 Bytes
at a time. This results in 2 × 2k(4 + 32k) bytes for the DC
round and 2k × 32 bytes for commitments during round one.
Round two requires 2× |m| × (k− 1) bytes for the DC round
and 2× 32(k − 1)× d|m| 3231e bytes of commitments.
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Fig. 2. The median, 99th percentile and 99.9th percentile of full protocol instance latency, i.e. until no more messages related to that protocol instance
remain. Dandelion only shows the median, as the 99th percentile is far off the chart due to its random phase switch. Network sizes are scaled logarithmically.

Assuming a group size of 15, as used on the blockchain
level in Monero, and a message length of 1024 Bytes, we
determined the bandwidth consumption of phase one. A par-
ticipant will send ≈ 1.34MiB of data and receive ≈ 18.83MiB
for a full round. To only compute the first round of phase one,
which is independent of any message size, a participant sends
≈ 434KiB and receives ≈ 6.09MiB. While these numbers
can be handled quite easily by modern network devices,
as they are on the scale of modern websites, it is easy to
see that it does not scale well beyond sizes of around 30
to 40 participants. These sizes are sensible privacy settings,
comparable to settings used in other strong systems [23].

B. Simulation Methodology

To evaluate our algorithm we built a discrete event simu-
lation1 for random networks. We implemented a skeleton of
3P3, where all message types and flows exist, but processing
takes only simulated time, e.g., commitments take 0.5ms2.
We implemented adaptive diffusion, flood and prune and a
simplified Dandelion broadcast for comparison. Communica-
tion delay between nodes is based on a normal distribution
µ = 80, σ = 15 clamped between 20ms and 200ms, values
estimated from well-connected clients of Hoiland et al. [29].

To generate a network, nodes create connections sequen-
tially, until they have c connections. This construction results
in c connections for most participants, but more for early
participants.

We varied the parameters of the simulation by the number
of participating nodes (100 to 10000), created connections
between nodes (8 to 20), the depth of the diffusion phase (up
to 8) and the spread of the diffusion (up to 8). We repeat all
parameter combinations for 50 runs. A simulation run creates
a random network and initiates a single protocol run until no
messages are left.

C. Network Size

An overview of the results for scaling based on network size
is shown in Figure 2, using the median, 99th and 99.9th per-
centile. This representation allows for analysis of the expected

1Available here https://github.com/vs-uulm/netsim2.
2Average computation time of a commitment on our testing hardware.

and worst-case performance of the protocols. Please note the
logarithmic spacing of the x-axis.

The flood and prune entry provides a baseline for evaluation.
The results show that the anonymity phases mostly dominate
3P3. Overall the performance of our system is reasonable,
while noticeably slower than the baseline. We did not include
results for the 99th percentile of Dandelion, which has, due to
its random nature, fairly large outliers.

D. Number of Connections and Diffusion Depth

We chose the number of connections between nodes to stay
above the log(n) connectedness boundary [19, Ch. 4]. The
amount of connections is relevant to keep the preconditions
intact as a fully connected network, even in the presence of
malicious nodes. Minimum connections per node had a tiny
impact on the overall performance.

Similar to the number of connections of nodes, the diffu-
sion depth had little impact on overall results. The trend in
runtime for longer diffusion runs was noticeably upwards, but
negligible compared to other factors.

E. Diffusion Spread

We expected η to have some impact on the number of
nodes reached over time, but not on total runtime. The
visual analysis of Figure 3 indicates a difference in the base
distribution for reaching 50% and 75% of the network. The
results for 99% are inconclusive, which is expected. The
means mη and confidence intervals for η = 2 and η = 8
m2 = 640.23ms ± 0.34ms and m8 = 615.60ms ± 0.27ms.
support this interpretation, as they are strictly non-overlapping.
This holds for all intermediate values of η as well. Overall the
cost is small compared to the privacy gain of reducing η.

F. Performance Optimizations

In a sufficiently trustworthy environment, commitments and
commitment seeds can be removed to reduce bandwidth con-
sumption significantly. On repeated collisions, these protection
mechanisms could be reintroduced.

Further, in an environment with at most a < k − 1 attack-
ers and rare parallel transmissions, the number of message
slots could be reduced to 2a + 2 slots. This change would
significantly reduce the required bandwidth As a cooperating

https://github.com/vs-uulm/netsim2
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Fig. 3. Behaviour of the protocol based on η.

attackers could only block a transmission slots, leaving a
success chance of p > 0.5.

VIII. CONCLUSION

In this paper, we proposed 3P3, a strong privacy protocol
for broadcasting blockchain transactions. 3P3 can withstand a
global passive observer and maliciously acting nodes jamming
communication. The protocol can broadcast almost arbitrarily
long messages with reduced overhead for zero messages of
comparable proposals. We analysed the privacy and security
of our system and provided a first performance analysis based
on a simulation.

Our analysis shows comparable performance to Dandelion
and only ≈ 2.5× overhead over a flood and prune broadcast
while disregarding bandwidth overhead. In usual environ-
ments of non-constant jamming attacks, this overhead can
be significantly reduced. The performance impact analysis of
the parameters of our system provides flexible parameters
for system developers using 3P3 to customise the privacy-
performance decisions.

While we focused on the use case of blockchains, 3P3 and
our results apply to other domains as well. The system does
not rely on blockchain specific properties, only on the privacy
requirement of broadcast communication.
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