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Abstract—Gabidulin codes, originally defined over finite fields,
are an important class of rank metric codes with various applica-
tions. Recently, their definition was generalized to certain fields of
characteristic zero and a Welch–Berlekamp like algorithm with
complexity O(n3) was given. We propose a new application of
Gabidulin codes over infinite fields: low-rank matrix recovery.
Also, an alternative decoding approach is presented based on
a Gao type key equation, reducing the complexity to at least
O(n2). This method immediately connects the decoding problem
to well-studied problems, which have been investigated in terms
of coefficient growth and numerical stability.

Index Terms—Gabidulin Codes, Characteristic Zero, Rank
Metric, Decoding, Matrix Recovery

I. M OTIVATION

Finding a matrix of minimal rank is a problem which occurs
in different scenarios. For example in random linear network
coding [1], an error can be described by a matrix of minimal
rank. Therefore, codes whose metric is based on the rank of
matrices can be beneficial. The most prominent example of
rank metric codes are Gabidulin codes, introduced by Delsarte
[2], Gabidulin [3], and Roth [4]. Given a received wordR =
C+E, the calculation of the error matrixE of minimum rank
can be described by the weight-minimization problem

min rank(E′) subject toHE′ = HE, (1)

whereH is a parity check matrix. This minimization problem
is equivalent to the problem of low-rank matrix recovery
(LRMR) [5], [6], which is the matrix-analogue to compressed
sensing [7], [8]. This problem aims to recover an unknown
matrix E ∈ Cn×n of low rank, and can be solved by finding
a solution for the under-determined linear system of equations
He = s, whereH ∈ Cm×n2

is the sensing matrix,e ∈ Cn2×1

is the vector representation of the matrixE, and s ∈ C
m×1

is the measurement when applying the sensing matrixH to
E (m < n2). Applications of LRMR can be found e.g.,
in the fields of image processing or collaborative filtering.
Since decoding of rank metric codes and LRMR is the same
mathematical problem (cf. Equation (1)), the application of
Gabidulin codes in characteristic zero might be promising to
the LRMR problem. If we replace the rank metric by the
Hamming metric, Equation (1) describes both a Hamming-
metric decoder and the compressed sensing problem. An
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exchange of concepts between these two areas was success-
fully investigated in the recent years [9]. Another important
application of Gabidulin codes in characteristic zero is space-
time coding.

Commonly, Gabidulin codes are defined over finite fields
as evaluation codes of linearized polynomials and can be
considered as rank metric equivalents of Reed-Solomon codes.
In [10], Reed-Solomon codes over the complex field were
investigated for applications in compressed sensing. LRMR
and space-time codes indicate that there is a need for Gabidulin
codes defined over fields of characteristic zero, possibly dense
in C. In [11] and [12], Gabidulin codes in characteristic
zero were introduced. In contrast to the finite field case,
θ-polynomials are used instead of linearized polynomials.
A Welch-Berlekamp-like decoding algorithm [13] was trans-
formed from the finite field case to the characteristic zero
case, which allows decoding in cubic time. In this work, we
consider an alternative method for decoding characteristic zero
Gabidulin codes.

The rest of the paper is structured as follows: SectionII
outlines Gabidulin codes and related concepts in characteristic
zero. In SectionIII we propose a new decoding approach. We
explain how the decoding problem can be solved by using shift
register synthesis to find solutions of a Gao-like key equation.
We also discuss issues of coefficient growth and numerical
problems which emerge when using infinite fields. Finally,
SectionIV concludes the paper.

II. GABIDULIN CODESOVER INFINITE FIELDS

This section first summarizes properties ofθ-polynomials,
which are used to define Gabidulin codes in characteristic zero.
Then we recall different definitions of rank metric and the
definition of Gabidulin codes.

A. θ-polynomials

Gabidulin codes over finite fields are usually defined using
linearized polynomials[14]. θ-polynomials can be seen as a
natural generalization of linearized polynomials for arbitrary
fields. LetK ⊆ L be fields andL/K be a Galois extension.
The Galois groupof L/K is given by

Gal (L/K) = {θ : L→ L automorphism: θ(k) = k ∀k ∈ K} .
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Lemma 1. [15] Let θ ∈ Gal (L/K). The set

L[x; θ] =
{

a =
∑da

i=0aix
i : ai ∈ L, da ∈ N, ada

6= 0
}

with multiplication rulex·α = θ(α)·x for all α ∈ L, extended
to polynomials inductively, and ordinary addition is a ring.

We call the polynomial ring of Lemma1 a θ-polynomial
ring. The degree ofa ∈ L[x; θ] is given bydeg a = da anda
is calledmonic if ada

= 1.

Remark 2. We state the following properties ofL[x; θ].

• (L[x; θ],+, ·) is non-commutative in general.
• θ-polynomials are a special case of skew polynomi-

als [15] with derivation δ = 0.
• For K = Fq, L = Fqm and the Frobenius automorphism

θ = ·q, L[x; θ] is isomorphic to a linearized polynomial
ring. Note that·q ∈ Gal (Fqm/Fq).

Is was already proven in [14] thatL[x; θ] is a left- and right-
Euclidean domain. E.g., the following division lemma is true.

Lemma 3. [14] For a ∈ L[x; θ], b ∈ L[x; θ]∗, ∃ uniqueχ, ̺ ∈
L[x; θ]: a = χ · b+ ̺ (right division), wheredeg ̺ < deg b.

Related to division, we can define the (right) modulo
congruence relation fora, b, c ∈ L[x; θ]:

a ≡ b mod c :⇔ ∃d ∈ L[x; θ] : a = b+ d · c.

We can define an evaluation map2 on L[x; θ] as

eva = a(·) : L→ L, α 7→
∑da

i=0aiθ
i(α), (2)

where θi(·) = θ(θ(. . . θ(
︸ ︷︷ ︸

i times

·) . . . )). From θ ∈ Gal (L/K) it

follows that θ : L → L is a K-linear map. Thus, alsoeva
is a linear map and the root space of aθ-polynomiala,

ker(a) = {α ∈ L : a(α) = 0},

is a linear subspace ofL. The evaluation map of the multi-
plication of twoθ-polynomialsa, b equals the composition of
the evaluation maps ofa, b respectively, i.e.eva·b = eva ◦evb.
Sinceθ is a linear map, it has well-defined eigenvalues which
are the roots of its characteristic polynomial

charθ(x) = det(x · idL − θ).

The eigenvalues and characteristic polynomial are the same
as of any matrix representation ofθ in a basis ofL over
K. We say that a characteristic polynomial is square-free if
all its roots have multiplicity one. Ifcharθ is square-free,θ
has distinct eigenvalues and any of its matrix representations
is diagonalizable. Using these properties, we can state the
following theorem.

Lemma 4. [12, Theorem 6] Ifcharθ is square-free, then

dimK(ker(a)) ≤ deg(a) ∀a ∈ L[x; θ] \ {0}

2There are several definitions of evaluation maps forθ-polynomials, cf. [16]
for the general skew polynomial case.

Proof. The proof can be found in [12, Theorem 6]. It uses
matrix representations ofθ and the fact that it is diagonalizable
due tocharθ being square-free.

Theorem 5. Let U ⊆ L be ans-dimensionalK-subspace. If
charθ is square-free, there exists a unique monicθ-polynomial
AU with U ⊆ ker(AU ) of minimum degree.AU is called
annihilator polynomialof U and if θ(·) can be calculated
in O(1), AU can be computed inO(s2) operations inL.
Moreover,degAU = dimU andU = ker(AU ).

Proof. The proof is similar to [12, Theorem 8]. It can be
shown by induction that the polynomialAs constructed in
Algorithm 1 fulfills U ⊆ ker(As). By the Euclidean algorithm,
As = χ · AU for someχ ∈ L[x; θ] anddegAU ≤ degAs =
dimU becausedegAi = degAi−1 + 1 ∀i, degA0 = 0
and thusdegAs = s = dimU . Also, degAU ≥ dimU by
Lemma4 (which assumes thatcharθ is square-free), implying
degAU = dimU . Since AU is defined to be monic, it
is therefore unique andAs = AU . Due dim(ker(AU )) ≤
degAU = dimU , together withU ⊆ ker(AU ), it follows that
U = ker(AU ). Line 3 of Algorithm 1 is executeds times and
each loop requires

• one evaluationAi−1(ui), costingO(s) operations inL
by naively applying the evaluation formula2

• one computation ofθ(Ai−1(ui)) ⇒ O(1) and
• one addition inL[x; θ] ⇒ O(s),

and hence the algorithm has complexityO(s) in L.

Algorithm 1: Annihilator Polynomial [12]

Input : K-basis(u1, . . . , us) of U ⊆ L.
Output : AU as in Theorem5.

1 A0 ← 1
2 for i = 1, . . . , s do
3 Ai ← (x− θ(Ai−1(ui))

Ai−1(ui)
) · Ai−1 // O(s)

4 return As

Theorem 6 ([12, Theorem 8]). Let g1, . . . , gn ∈ L, linearly
independent overK, and r = (r1, . . . , rn) ∈ Ln. Then there
is a unique monicθ-polynomialr̂ of degreen− 1 such that

r̂(gi) = ri ∀i = 1, . . . , n.

B. Rank Metric in Characteristic Zero

Let K ⊆ L be fields,L/K a Galois extension of degree
m and B a basis ofL over K. The number ofk-linearly
independent columns of a matrixX is denoted byrankk(X)
for k ∈ {L,K}. We define the matrices

Xθ =








x1 . . . xn

θ(x1) . . . θ(xn)
...

. . .
...

θm−1(x1). . . θ
m−1(xn)








, XB =








x1,1 . . . xn,1

x1,1 . . . xn,1

...
. . .

...
x1,m. . . xn,m








,

where(xi,1, . . . , xi,m)T ∈ Km is the representation ofxi ∈ L
in the basisB. In [12, Section 2.2] four definitions of rank
weight in characteristic zero are given.



Definition 7 ([12]). Let x ∈ Ln. We define the rank weights

ω1(x) = deg(A〈x1,...,xn〉)

ω2(x) = rankL(Xθ)

ω3(x) = rankK(Xθ)

ω4(x) = rankK(XB)

The corresponding rank metrics can be defined as

dR,i(x,y) = ωi(x− y) ∀i ∈ {1, 2, 3, 4}.

In the finite field case, these rank weights are the same.
Over characteristic zero, the following relation can be proven.

Lemma 8. [12, Lemmata 13, 14, and 15]

ω1(x) = ω2(x) ≤ ω3(x) = ω4(x)

C. Gabidulin Codes

Gabidulin codes were originally defined by [3], [2], [4] over
finite fields. In [11], the definition was extended to certain
fields of characteristic zero, usingθ-polynomials instead of
linearized polynomials.

Definition 9. Let g1, . . . , gn ∈ L be linearly independent over
K. Then a Gabidulin code of lengthn and dimensionk ≤ n
is defined as

CG[n, k] = {(f(g1), . . . , f(gn)) : f ∈ L[x; θ] ∧ deg f < k} .

An overview of properties can be found in [12].

III. A N EW DECODING APPROACH

In the following, letL,K andθ ∈ Gal (L/K) be such that
charθ is square-free. We assume thatθ(·) can be computed
in O(1) operations inL. Under these assumptions, the latter
only being important for complexity statements, we show that
the decoding problem is similar to the finite field case.

Suppose that a codewordc ∈ CG is corrupted by an error
e = (e1, . . . , en) ∈ Ln of rank weightτ := wtR(e). The
received wordis then given by

r = c+ e ∈ Ln.

We say thatτ errors occurred. The goal of decoding is to
recoverc from r if τ is not too large.

A. Key Equation

Definition 10. We define the error span polynomial

Λ = A〈e1,...,en〉.

The following lemma is, in contrary to the finite field case,
not obvious (cf. Theorem5) and only holds for the case of
charθ being square-free.

Lemma 11. degΛ = τ

Proof. This follows directly from Theorem5 together with
deg Λ = dim〈e1, . . . , en〉 = wtR(e) = τ .

The following lemma is necessary to prove Theorem13,
the main statement of this section.

Lemma 12. Let U ⊆ L be aK-subspace anda, b ∈ L[x; θ].

a ≡ b mod AU ⇔ a(u) = b(u) ∀u ∈ U

Proof. By Lemma3, there areχ, ̺ ∈ L[x; θ] with

a− b = χ · AU + ̺

anddeg ̺ < degAU . Then,

a(u) = b(u) ∀u ∈ U

⇔ a(u)− b(u) = (a− b)(u) = (χ · AU + ̺)(u)

= χ(AU (u)) + ̺(u) = χ(0) + ̺(u)

= ̺(u) = 0 ∀u ∈ U .

Also, ̺(u) = 0 for all u ∈ U if and only if ̺ = 0, since
otherwise it would contradict the minimality ofAU .

Let r̂ be the known interpolation polynomial of degree
deg r̂ < n corresponding to the received wordr as in Theo-
rem6. Recall thatf is the unknown information polynomial of
degreedeg f < k andΛ is the unkown error span polynomial.
Also,A〈g1,...,gn〉 is known and has degreedegA〈g1,...,gn〉 = n,
since thegi’s are linearly independent. The following state-
ment is an analogue to Gao’s key equation for Reed–Solomon
codes and a generalization of [17, Theorem 3.6], where it was
proven for finite field Gabidulin codes.

Theorem 13 (Key Equation).

Λ · r̂ ≡ Λ · f mod A〈g1,...,gn〉 (3)

Proof. Let u ∈ 〈g1, . . . , gn〉. Then, we can writeu as aK-
linear combination of thegi’s, u =

∑n

i=1 αigi, and

(Λ · r̂)(u)− (Λ · f)(u) = Λ(r̂(u)− f(u))

= Λ(r̂(
∑n

i=1αigi)− f(
∑n

i=1αigi))

=
∑n

i=1αiΛ(r̂(gi)− f(gi)) =
∑n

i=1αiΛ(ri − ci)

=
∑n

i=1αiΛ(ei) = 0.

The statement follows by Lemma12.

B. Decoding using Shift Register Synthesis Problems

Since it is hard to directly find a solution to the key equation,
which is non-linear, we try to find a solution to the following
shift register synthesis problem, which is formulated in a
similar way as the problem which is solved in [18] over
ordinary polynomial rings.

Definition 14. Let k, r̂ and A〈g1,...,gn〉 be given as above.
A shift register problem(SRP) is the problem of finding
(λ, ω) ∈ (L[x; θ]∗)2 such that

λr̂ ≡ ω mod A〈g1,...,gn〉 (4)

degλ > degω + k (5)

degλ minimal (6)

The following theorem is, besides the key equation, the main
statement of this paper. It proves that the decoding problem
and the SRP are equivalent if the number of errors is less than
half the minimum distance.



Theorem 15. If τ < d
2 , the SRP has a solution(λ, ω) and

any such solution satisfies

(Λ,Λf) = α(λ, ω)

for someα ∈ L∗, minimum distanced and information
polynomialf ∈ L[x; θ].

Proof. We first prove that the SRP has a solution and all
solutions satisfyω = λf , by applying similar arguments as in
the proof of [12, Theorem 25]. Then we show that the solution
is unique up to a scalar multiplication. By Theorem13,
(Λ,Λf) fulfills the congruence relation (4) and due to

degΛf = deg Λ + deg f < degΛ + k,

it also satisfies the degree condition (5). Thus, the SRP has a
solution3 (λ, ω), and by Lemma11, any such solution satisfies

deg λ ≤ degΛ = τ, (7)

degω < degλ+ k = τ + k. (8)

We also know thatdim〈e1, . . . , en〉 = τ , implying

degA〈λ(e1),...,λ(en)〉 = dim〈λ(e1), . . . , λ(en)〉 ≤ τ

and thus,

degA〈λ(e1),...,λ(en)〉(ω − λf) < degA〈λ(e1),...,λ(en)〉 + τ + k

≤ 2τ + k ≤ 2 d−1
2 + k = n− k + k = n,

Due to (4) and Lemma12, λ(r̂(gi)) = (λr̂)(gi) = ω(gi) for
all i, we obtain

A〈λ(e1),...,λ(en)〉(ω − λf)(gi)

= A〈λ(e1),...,λ(en)〉(ω(gi)− λ(f(gi)))

= A〈λ(e1),...,λ(en)〉(λ(r̂(gi))− λ(f(gi)))

= A〈λ(e1),...,λ(en)〉(λ(ri − ci))

= A〈λ(e1),...,λ(en)〉(λ(ei)) = 0

Thus, we obtainA〈λ(e1),...,λ(en)〉(ω − λf) = 0 because the
polynomial has degree< n but evaluates to0 at n linearly
independent positions (cf. Lemma4). Since L[x; θ] is an
integral domain, we getω = λf .

Together with the congruence relation (4), it follows that

λ(r̂ − f) ≡ 0 mod A〈g1,...,gn〉,

thus, λ(ei) = λ(r̂ − f)(gi) = 0 ∀i = 1, . . . , n. Due to
deg λ ≤ deg Λ, λ must be the annihilator polynomialΛ of
〈e1, . . . , en〉 multiplied by a scalarα−1 = λdeg λ ∈ L∗, the
leading coefficent of the polynomialλ. Hence, also

αω = αλf = Λf (9)

and the claim is proven.

Remark 16. In the caseτ < d
2 , a solution of the SRP is also

a solution to thelinear reconstruction problemdiscussed in
[12]. This follows from the degree conditions(7) and (8), and
the observation thatλ(r̂(gi)) = ω(gi) for all i = 1, . . . , n.

3Either (Λ,Λf) or a “smaller” solution in terms ofdeg λ

We can conclude that for rank errors up to half the minimum
distancedR,i(r, c) = ωi(e) <

d
2 , using any rank metricdR,i

with i ∈ {1, 2, 3, 4} of Definition7, we can solve the decoding
problem by finding a solution of the SRP since the number
of errors is τ = ω1(e) ≤ ωi(e) < d

2 (cf. Lemma 8).
Note that certain Gabidulin codes over finite fields cannot be
decoded beyond half the minimum distance in polynomial time
(cf. [19]). Investigating whether this is also true over fields of
characteristic zero is beyond the scope of this paper. The next
section summarizes known algorithms to solve SRPs.

C. Solving Shift Register Problems

SRPs overL[x] andL[x; θ] are well-studied and have been
used for decoding of several algebraic codes, including Reed–
Solomon and (finite field) Gabidulin codes.

Two of the most important algorithms to solve these kinds
of problems are:

1) TheExtended Euclidean Algorithm.
SinceL[x; θ] is a Euclidean domain, it admits a Eu-
clidean algorithm. It is shown e.g. in [17] that the
Euclidean algorithm overF[x; ·q] can be performed in
O(D(n)) time, whereD(n) is the complexity of divid-
ing two polynomials inF[x; ·q]. These results directly
translate toL[x; θ].
Using the classical division algorithm,D(n) ∈ O(n2).
However, it is justifiable that the division method de-
scribed in [20] generalizes toL[x; θ] whereθ(·) can be
computed inO(1), implying D(n) ∈ O(n1.69 log(n)).

2) Module Minimization.
The algorithms described in [21] solve a generalized
version of the SRP described in this paper. Ifθ(·)
can be computed inO(1), the complexity of finding
a solution of the SRP becomesO(n2). Moreover, as
already mentioned in [21], there is the substantiated hope
for similar speed-ups as in theL[x] case, such as the
divide-and-conquer variant described in [22].

Alternatively, a variant of the Berlekamp–Massey algorithm
(cf. [23]) can be used, which might have advantages in
practical scenarios.

D. Issues Besides Complexity

Since we are dealing with infinite fields, we have to deal
with some issues that do not appear in the finite field case.

As already mentioned in [12], when computing in exact
computation domains, such as number fields, we have to face
the problem of coefficient growth. Fortunately, our proposed
decoding method reduces the decoding problem to a problem
that was already studied in terms of coefficient growth before
(cf. [24]). As described in SectionIII-C, we can use module
minimization to obtain a solution of the SRP. More precisely,
in [21] a solution of the SRP is obtained by transforming a
basis of a certainL[x; θ]-module into a normal form, called
weak Popov form. Instead of using the algorithms described
in [21] to obtain a weak Popov form, we can use the methods
from [24]. The algorithms in [24] are slower than those in [21],



but have a better control of coefficient growth in intermediate
results using fraction-free methods.

On the other hand, especially in the application of LRMR,
it might be advantageous in terms of complexity not to use
exact but approximate computations. Thus, one has to deal
with numerical issues. In the Hamming metric analogy, this
problem was already investigated for complex Reed–Solomon
codes (cf. [9, Chapter 7]). There, it turned out that a modifi-
cation of the Berlekamp–Massey algorithm is the numerically
most stable one among the classical approaches for solving an
SRP. It should also be noted that the interpolation algorithm
presented in [25] is a reasonable choice to computer̂, since
it is the skew polynomial analogue of the numerically stable
Newton interpolation with divided differences.

E. Summary of the Decoding Algorithm

Algorithm 2 summarizes the decoding procedure.

Algorithm 2: Decode Gabidulin Codes
Input : r = c+ e

Output : f such thatc = (f(g1), . . . , f(gn))
or “decoding failure”.

1 Calculater̂ as in Theorem6
2 CalculateA〈g1,...,gn〉 as in Definition10
3 (λ, ω)← Solve SRP with input̂r, A〈g1,...,gn〉

4 (Λ,Ω)← α−1(λ, ω) with α as in (9)
5 (χ, ̺)← Right-divideΩ by Λ (cf. Lemma3)
6 if ̺ = 0 then
7 return χ

8 else
9 return “decoding failure”

Theorem 17. Alg. 2 is correct and has complexityO(n2).

Proof. Correctness follows from Theorems13 and 15. The
lines of the algorithm have the following complexities, imply-
ing the overall statement:

• Line 1: We can use the interpolation algorithm for skew
polynomials presented in [25], having complexityO(n2).

• Line 2: O(n2) by Algorithm 1.
• Line 3: O(n2) using e.g. module minimization as in [21].
• Line 4: Negligible.
• Line 5: O(n2) using the standard algorithm [15].

IV. CONCLUSION

We have proposed a new method for decoding Gabidulin
codes over fields with characteristic zero, reducing the de-
coding complexity toO(n2) compared toO(n3) in [12].
This alternative procedure reduces decoding to a linear shift
register synthesis problem, which can be efficiently solved
using several known algorithms, each having advantages in
terms of speed, coefficient growth or numerical stability. The
presented work can be used for applying Gabidulin codes over
characteristic zero to space-time coding and to the low-rank
matrix recovery problem. The latter one is, to the best of our
knowledge, a new application for these codes.
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