
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Cryptographic Design of PriCloud,
a Privacy-preserving Decentralized Storage

with Remuneration
Henning Kopp, David Mödinger, Franz J. Hauck, and Frank Kargl Member, IEEE

Abstract—Over the last years, demand for file hosting has sky-rocketed due to cost reductions and availability of services. However,
centralized providers have a negative impact on the privacy of their users, since they are able to read and collect various data about their
users and even link it to their identity via their payments. On the other hand, decentralized storage solutions like GNUnet suffer from a
lack of participation by providers, since there is no feasible business model. We propose PriCloud, a decentralized storage system which
allows users to pay their storage providers without sacrificing their privacy by employing anonymous storage smart contracts and private
payments on a blockchain. We are able to provide privacy to the users and storage providers, and unlinkability between users and files.
Our system offers decentralized file storage including strong privacy guarantees and built-in remuneration for storage providers.

Index Terms—Distributed Storage, Peer-to-Peer, Applied Cryptography, Blockchain, Privacy

F

1 INTRODUCTION

Cloud storage systems, such as Dropbox, are in use by the
general population for years now. Although providing a
financially viable service, privacy often plays only a minor
role in these systems. The identity of users can be revealed by
their e-mail address, payment information or IP addresses.
Central providers are often incentivized to disregard pri-
vacy to improve efficiency, e.g., via file deduplication or
personalized services. Another drawback of a centralised
file storage is the lack of smaller competitors, creation of
a single point of failure, as well as a lack of censorship
resistance, as accounts can be suspended without appeal.
Privacy improvements are important, as storage solutions are
used to store privacy-sensible documents such as password
lists, tax or banking information. Further, storage solutions
may be used by whistle-blowers and journalists for critical
documents.

Privacy-friendly decentralized storage solutions exist, e.g.,
GNUnet [1] and Freenet [2], in which the storage is provided
by other participants of the network. They lack financial
incentives for participants to contribute storage, leading
to the so called free-riding problem: Users are consuming
storage capacities but are unwilling to provide storage
themselves. As payments provide privacy risks, adding a
payment scheme is non-trivial.

The lack of a financially viable alternative for a decentral-
ized storage system led to the creation of PriCloud, a novel
peer-to-peer storage system, where users are remunerated
for their contribution of resources [3]. PriCloud uses a
blockchain-based token system to enable financial incentives
for those participants who provide storage to other users.
Unlike previous storage solutions, our system makes use of
cryptographic techniques to enable private payments which
guarantee unlinkability and untraceability of transactions.
Storage contracts in the blockchain ensure that payments

are only due for fulfilled storage promises, while retaining
unlinkability of a stored file and its payment. Compared to
centralized systems, PriCloud provides sender and receiver
anonymity, censorship resistance and possiblity to mitigate a
single point of failure.

1.1 Contribution

This paper is an extended version of a previous presentation
of our scheme [3]. We provide a more detailed description of
the linkable ring signature scheme and its security properties,
as well as the security definitions of the proof of storage
we use. Further, this exposition provides a more extensive
comparison with related work and discusses requirements
on other abstraction layers beside the blockchain layer. The
contributions of our work can be summarized as follows:
• We propose a novel design for a privacy-preserving

decentralized storage system which allows for privacy-
preserving payments.

• Our privacy-preserving payment mechanism on the
blockchain is based on the cryptographic constructions
of ring signatures and one-time addresses to provide
unlinkability and untraceability of transactions.

• To incentivize file storage and retrievability, we make
use of proofs of storage and provide a formal analysis
of the incentives for serving files.

• Finally, we discuss additional considerations for abstrac-
tion layers beside the blockchain, e.g., the network layer.

1.2 Paper Outline

Section 2 introduces the relevant notation used throughout
this paper. Section 3 provides an overview of the mechanics
of blockchain-based digital currencies. In Section 4, we
introduce the PriCloud system focussing on the contract
mechanics and privacy mechanisms for payments. Section 5

Page 1 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

discusses differences and improvements of PriCloud com-
pared to similar systems. The description of PriCloud focuses
on the abstraction layer of blockchains, but for the system
to remain private, additional requirements need to be met
on other layers. These are discussed in Section 6. Section 7
concludes our work.

2 NOTATION

We write a← A(x) to assign to a the output of running the
randomized algorithm A on input x. With a← A(x; r) we
denote the deterministic result of running A on input x and
the fixed randomness r. We say that an algorithm A is ppt if
it runs in probabilistic polynomial time. With Zp we denote
the residue classes of the integers Z modulo p ∈ N.

We say that a function f is negligible if for all positive
polynomials p there is a natural number N ∈ N such that for
all n > N it holds that |f(n)| < 1/p(n). Throughout the text,
f ∈ Z`B with B ∈ N denotes a file viewed as a vector with
chunks f1, . . . , f` ∈ ZB . With the symbol {0, 1}• we denote
the Kleene closure of {0, 1}, i.e., the set of arbitrarily long
finite bit strings.

3 BACKGROUND

The first truly decentralized payment system, not requiring
a third party, was Bitcoin [4], where double spending, i.e.,
spending the same money twice, is prevented by a set of
so-called miners voting with their computational power
on the validity of transactions. This design was copied in
numerous other blockchain-based decentralized payment
systems [5] and is also used in our system. This chapter gives
an overview of this design paradigm.

Bitcoin uses the notion of transactions, which are repre-
sented as a data structure of one or more inputs and one or
more outputs. Each input refers to a previous output which
is to be spent by this transaction. The output contains the
public key of the receiver, i.e., its identity, and the amount
of money to be transferred. The input contains a signature
corresponding to the public key in the referenced output.
The signature acts as a proof of possession of a secret key,
and therefore authorization to spend the referenced output.

After creating a transaction the sender broadcasts it into
the network. So called miners run an algorithm which is
used to validate and bundle the valid transactions into so
called blocks. A block contains a time stamp, a nonce and a
reference to the most recent known block. A block is valid if
the hash of the block is smaller than a difficulty parameter
included in the previous block. Miners need to find this hash
as a proof of work [6]. The difficulty is dynamically adjusted
such that the expected block frequency is one block per 10
minutes, assuming no changes in the underlying hash rate.
This data structure is called a blockchain and is a form of
consensus for transactions.

The proof of work mechanism is used to prevent Sybil
attacks [7], [8], the creation of identities to increase voting
power, in the consensus protocol. Classical consensus pro-
tocols use static and known identities to prevent this attack.
However, Bitcoin supports a dynamic set of participants.

In order to reward the miners for their participation a
special transaction, called coinbase, is included into blocks.

A coinbase transaction has no inputs but an output which
grants the miner of this block a predetermined amount of
Bitcoins. In order to encourage miners to persist transactions
in blocks, these can be equipped with a transaction fee, which
will be awarded to the miner including this transaction.

If two different new blocks are found at the same time,
this situation is called a fork. In this case the miners continue
to mine on one of the chains chosen at random, until one of
them is longer, which is then considered the valid chain.

If blocks contain invalid transactions, e.g., they have a
wrong signature, spend money which has already been spent
before or from a block relying on an invalid block, miners
reject that block. Consequently, miners are incentivized to
persist only correct information in the blockchain.

If an adversary changes old transactions already persisted
in the blockchain, the hash of the block changes thus breaking
all references to this block. In order to convince the other
miners of the validity of this chain, it needs to grow longer
than the current chain. In a naive analysis, the adversary
needs to control over 50% of the hashing power of the
network to extend his chain fast enough. This is considered
infeasible. The strongest attacker under which Bitcoin is
secure is still subject to research.

Concluding, a blockchain is a distributed database with-
out a trusted third party. The persisted data is replicated
at each participant and a consensus protocol decides what
data is persisted. Further, the incentive structure and the
validation rules are built in such a way that only correct
information is persisted. Applications of blockchains beyond
decentralized currencies include secure and fair multi-party
computations [9], [10], [11] and smart contracts [12], [13].

4 THE PRICLOUD SYSTEM

4.1 Overview

The goal of PriCloud is to provide a distributed storage
system with financial rewards for its storage providers,
and strong privacy protection for participating users. We
implement our file storage with anonymous payments based
on a blockchain enhanced with anonymised money transfers
and storage contracts, so that no information is leaked by the
payment method.

PriCloud supports three roles: miners, storage providers,
and users. Each participant in a PriCloud network can hold
one or more of these roles.

The miners function the same as described in Section 3.
The blockchain’s loose synchronization of time between
participants is used so that storage contracts can have an
expiry date.

Users set up storage smart contracts with storage
providers, locking money of the user for the duration of the
contract. This money can be spent by the storage provider
once the contract is fulfilled or by the user, should the
contract be broken. To fulfil the contract, the storage provider
needs to produce a valid proof of storage of the file at
expiration time. The proof of storage is required in the
blockchain, as the state of contracts needs to be publicly
verifiable for miners. Storage providers are not trusted by the
user, but are assumed to be mostly rational due to financial
incentives.

Page 2 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Users wanting to participate can buy PriCloud tokens
(money) on an exchange, or perform any of the other roles to
earn tokens. Miners or storage providers do need little setup
and can be run directly, but a storage provider should own
some money for security deposits in retrieval operations to
prevent cheating, further explained in Section 4.5.3.

Remark 1 (Possible Extensions). PriCloud only provides the
abstraction of storing and retrieving chunks of data. More advanced
functionalities, e.g., file encryption or increased storage guarantees
by erasure coding can be added on top of PriCloud using standard
methods, some of these are discussed in Section 6.

4.2 Threat Model

PriCloud consists of several different components, whose
security analysis is available in their respective sections. In
general, the actors in PriCloud, i.e., users, storage providers
and miners, are assumed to exhibit rational behaviour, i.e.,
improve their utilisation of the system. Hereby, utilization
represents uploading (for users) or earning money by storing
files (for storage providers). Different components specialize
this general assumption in different ways, to yield more
realistic results for their use case. Especially, privacy must
not be compromised by malicious actors willing to disrupt
the system.

4.3 Mining

Unlike Bitcoin (cf. Section 3), each PriCloud miner includes a
new one-time public key (see Section 4.4.2) for itself in every
new block in order to achieve privacy for its mining rewards.
Hence, it cannot be detected if different coinbase rewards
belong to the same miner.

4.4 Anonymous Payments

Since the transaction data in blockchains is public, they can
be analysed by anyone to allow for inferences about the
actors [14], [15]. Untraceability is even one of six properties
of an ideal cash system according to Okamoto and Ohta [16].
Untraceability in their interpretation means that the privacy
of the user should be protected. Especially, the relationship
between the user and his purchases must be unlinkable by
anyone.

In CryptoNote [17], the original requirement of un-
traceability is split into anonymity of the sender and of
the receiver. Untraceability means that for each incoming
transaction all possible senders have the same probability of
being the real sender. Unlinkability means that for any two
transactions it is impossible to determine if they were sent to
the same recipient. Similarly, we provide untraceability by
linkable ring signatures, whereas unlinkability is achieved
by one-time payment addresses. We combine standard
mechanisms to achieve unlinkability and untraceability of
the payments, which are explained in the following.

4.4.1 Linkable Ring Signatures
Ring signatures are a special kind of digital signatures due
to Rivest, Shamir and Tauman [18]. A ring signature proves
that a document was signed by a member of a group of
signers. Since the identity of the member is not revealed,

this provides a level of privacy. To create a ring signature
the signer needs its own private-public key pair as well as
the list of public keys of the other members in the group. In
particular, no group set-up procedure is necessary in contrast
to group signatures. For verification, the signature and the
list of public keys of the members in the group are needed.
In a nutshell, ring signatures are digital signatures where
the signer is k-anonymous, i.e., indistinguishable from k − 1
other possible signers.

We will now define linkable ring signatures and then
go on to explain their usage in our system together with
a concrete instantiation. We base the definition on Liu et
al. [19], however they define linkability only with respect to
a fixed group of public keys, whereas in our definitions and
constructions linkability needs to be achieved even across
different sets of members in the ring, since otherwise double
spending would become possible. To prevent privacy leaks,
transaction outputs are sent to one-time keys. An identity
will only be revealed, if a user decides to attempt a double
spend. As this is an illegal action, it is worth to identify the
user.

Definition 1 (Linkable Ring Signature [19]). A linkable
ring signature scheme is a quadruple of algorithms, Σ =
(Gen,Sign,Verify, Link) such that:
• (pk , sk) ← Gen(1λ) is a ppt algorithm. It takes a security

parameter λ and outputs a public and secret key pair (pk , sk).
• σ ← Sign(m, sk , pk1,...,n) is a ppt algorithm run by the

signer to create a ring signature σ. Its input is a message m,
a secret key sk , as well as a list of public keys pk1,...,n. In a
usual invocation of the signing algorithm, sk corresponds to
one of the public keys pk1,...,n.

• b := Verify(σ,m, pk1,...,n) is a deterministic algorithm run
by the verifier which returns a single bit b, where ’1’ indicates
acceptance and ’0’ indicates rejection. Its input is a message
m, a signature σ, and a list of public keys pk1,...,n.

• ` := Link(m,m′, σ, σ′) is a deterministic algorithm that
takes two messages m and m′, together with their signatures
σ and σ′ and returns one bit `, where ` = 0 indicates that
the signatures are linked, i.e. were signed by the same secret
key sk , and ` = 1 indicates that they are independent.

For a linkable ring signature we require the following properties:
Correctness guarantees that a correctly signed message will be

accepted by the verification. For all security parameters λ ∈ N,
all (pk i, sk i) ← Gen(1λ) where i ∈ {1, . . . , n} for some
n ∈ N, all messages m, all σi ← Sign(m, sk i, pk1,...,n) it
holds that Verify(σi,m, pk1,...,n) = 1.

Linkability intuitively means that two messages that are signed
by the same secret key will be spotted by the algorithm Link.
Link will claim only with negligible probability that two
signatures from different secret keys are linked. Note that
this definition assumes linkability even if the signatures
have been created using different sets of public keys. For
all security parameters λ ∈ N, all (pk i, sk i) ← Gen(1λ),
where i ∈ {1, . . . , n}, all (pk ′j , sk

′
j) ← Gen(1λ), where

j ∈ {1, . . . , `}, and any messages m,m′, the term

P
[
Link(m,m′,Sign(m, sk1, pk1,...,n),

Sign(m′, sk ′1, pk
′
1,...,`)) = 0

]
is negligible in λ. Intuitively this means that the algorithm
Link has a negligible probability of marking two independent

Page 3 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

signatures as linked.
Additionally for all security parameters λ ∈ N, all
(pk i, sk i) ← Gen(1λ), where i ∈ {1, . . . , n}, all
(pk ′j , sk

′
j) ← Gen(1λ), where j ∈ {1, . . . , `}, and for one

j it holds that (pk ′j , sk
′
j) = (pk i, sk i) for some i, and any

messages m,m′, the term

P
[
Link(m,m′,Sign(m, sk i, pk1,...,n),

Sign(m′, sk i, pk
′
1,...,`)) = 1

]
is negligible in λ. This means that the algorithm Link has
a negligible probability of marking two linked signatures as
independent even if some ring members change.

Signer Ambiguity guarantees the anonymity of the real signer
of the message among the other members of the ring. An
algorithm E without any access to secret keys that tries to
guess the real signer has only a negligible advantage over
randomly picking one of the members in the ring. We have to
take into account that some secret keys may be leaked and thus
the guessing algorithm E could have a proportionally higher
chance of success, since it can verify if one of the leaked keys
has been used in the ring. If that is the case, then E knows
the true signer. Formally, for any ppt algorithm E , on input
of any message m, any lists of n public keys pk1,...,n, any
set of t corresponding secret keys Dt = {ŝk1, . . . , ŝk t}, and
any valid signature σ ← Sign(m, sk j , pk1,...,n) generated
by the user with public key pk j it holds that

P
[
E(m, pk1,...,n, Dt, σ) = pk j

]
=

∈

(
1
n−t −

1
Q(λ) ,

1
n−t + 1

Q(λ)

)
,

if skj 6∈ Dt and t < n− 1
> 1− 1

Q(λ) , otherwise

for any polynomial Q(λ).

Regarding unforgeability of the ring signature we are able to
use the attacker model of Liu et al. [19]

Definition 2 (Existential unforgeability against adaptive
chosen-plain-text, adaptive chosen-public-key attackers [19]).
Let SO(m′, pk′1,...,n′) be a signing oracle that accepts as inputs a
message m′ and a list of n public keys pk ′1,...,n′ , and produces a
signature σ′ such that Verify(σ′,m′, pk ′1,...,n′) = 1. A linkable
ring signature scheme is called existentially unforgeable (against
adaptive chosen-plaintext and adaptive chosen public-key attackers)
if, for any ppt algorithm A with access to a signing oracle
SO such that (pk1,...,n,m, σ) ← ASO(pk1,...,n) for a list
pk1,...,n = (pk1, . . . , pkn) of n public keys chosen by A, its
output satisfies Verify(σ′,m′, pk1,...,n) = 1 only with negligible
probability. Note that (pk1,...,n,m, σ) should not correspond to
any query-response pair previously given to the signing oracle.

Ring signatures can be used to provide sender anonymity
for transactions. Each transaction input references multiple
transaction outputs of earlier transactions where one output
is the real output and the others are used to hide the sender
and thus increase privacy. The public keys used in the ring
signature are those of the referenced outputs. The message
which is signed are the transaction outputs of the new
transaction. The signature is included in the input, as in other
blockchain systems. To an observer the real spent output is
indistinguishable from the other fake outputs.

To detect a double spends, two real references to the same
output, linkable ring signatures allow to link signatures if
the same key has been used to sign, rendering a second
transaction invalid.

The amounts of the referenced transactions need to be
equal, otherwise the real amount cannot be determined from
the set of referenced transaction outputs. Therefore, our
system uses standardized denominations. This is similar
to banknotes and coins where the set of possible values is
fixed, and these values need to be combined to pay different
amounts. The granularity of the amounts impacts scalability
and privacy in opposite manners, as either many outputs are
required or smaller anonymity sets are created. A preliminary
choice of the denominations are powers of two. A justified
choice of this parameter needs further evaluation and is still
subject to research. The initial anonymity sets are given by
the coinbase transactions.

CryptoNote [17] and many of its derivatives like Mon-
ero or Bytecoin use a variation of the FS linkable ring
signatures [20]. In contrast, our system uses a linkable
variation of LWW signatures [19] which has the advantage
of being significantly shorter than FS signatures. We sketch
the linkable variation of the LWW scheme scheme in the
following, based on the work of Shen Noether [21], [22]. The
signature algorithm can be found in Figure 1.

Let G be an elliptic curve with generator G. Let Pi ∈ G,
i = 1, . . . , n be the public keys of the members in the ring,
in non-elliptic curve contexts denoted as pk i. Assume that
for the j-th public key we know the corresponding private
key x with Pj = xG. Let I = xHp(Pj) be the key image,
where Hp : G 7→ G is a hash function. The key image is
included in the signature to enable linking of the signatures,
as two signatures are linked if they have the same key image.
Knowledge of the key image does not reveal the signer since
x is private.

Let m be the data to sign and H a hash function. Let
α, and si for i = 1 . . . , n, i 6= j, be random values in the
base field of the elliptic curve. To generate the signature the
following values are computed:

Lj = αG, Rj = αHp(Pj), cj+1 = H(m,Lj , Rj).

For all i ∈ Z/nZ, i 6= j define Li, Ri, and ci successively:

Li+1 = si+1G+ ci+1Pi+1,

Ri+1 = si+1Hp(Pi+1) + ci+1I,

ci+2 = H(m,Li+1, Ri+1).

The last step is closing the ring by fusing the two ends.
Let sj = α− cjxj mod `, where ` is the group order of the
elliptic curve. Then define

Lj = αG = sjG+ cjxjG = sjG+ cjPj ,

Rj = αHp(Pj) = sjHp(Pj) + cjI,

cj+1 = H(m,Lj , Rj).

The signature consists of σ = (I, c1, s1, · · · , sn). To verify
a signature, recompute the sequence c1, . . . , cn+1 and checks
if cn+1 = c1. If that is the case the signature is valid.

In the signature scheme used by CryptoNote [17], the
ci are chosen randomly and appended to the signature.
Our construction uses the hash function as a PRNG, so the

Page 4 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

• (pk , sk)← Gen(1λ) (using an elliptic curve G with generator G)
1) Choose a secret key sk = x ∈ {1, . . . , `} uniformly at random, where ` is the group order of G.
2) Choose a point P ∈ G uniformly at random and compute the public key pk as the point P = xG.
3) Return the pair (pk , sk) = (P, x).
• σ ← Sign(m, sk , pk1,...,n)

1) Parse the points (P1, . . . , Pn) = pk1,...,n.
2) W.l.o.g. assume that the secret key x = sk corresponds to the j-th public key Pj = pk j , i.e., pk j = xG.
3) Compute the key image as I = xHp(Pj), where Hp is a hash function returning a point on the elliptic curve.
4) Choose α, and si for i = 1 . . . , n, i 6= j uniformly at random from the base field of the elliptic curve G.
5) Compute the following values.

Lj = αG, Rj = αHp(Pj), cj+1 = H(m,Lj , Rj)

6) For all i ∈ Z/nZ, i 6= j compute the following.

Li+1 = si+1G+ ci+1Pi+1 Ri+1 = si+1Hp(Pi+1) + ci+1I ci+2 = H(m,Li+1, Ri+1)

7) Define sj = α− cjxj mod `, where ` is the group order of the elliptic curve and close the ring by computing

Lj = αG = sjG+ cjxjG = sjG+ cjPj Rj = αHp(Pj) = sjHp(Pj) + cjI cj+1 = H(m,Lj , Rj)

8) Return the signature σ = (I, c1, s1, · · · , sn).
• b := Verify(σ,m, pk i∈I)

1) Parse σ as (I, c1, s1, · · · , sn).
2) Recompute Li, Ri for i ∈ {1, . . . , n}, as well as c1, . . . , cn+1.
3) Return 1 if cn+1 = c1.
• ` := Link(m,m′, σ, σ′)

1) Parse σ as (I, c1, s1, · · · , sn) and σ′ as (I ′, c′1, s
′
1, · · · , s′n).

2) Return ` = 0 if I = I ′. Otherwise return ` = 1.

Figure 1. A variation of the LWW ring signature scheme

ci are chosen pseudorandomly and can be reconstructed
given c1. Thus a signature in CryptoNote consists of
(I, c1, . . . , cn, s1, . . . , sn) and is therefore larger than signa-
tures in the scheme described.

The proofs of security, linkability and signer ambiguity of
the described scheme are simple modifications of the proofs
found in the work of Liu et al. [19] and can be found in the
works of Noether [21], [22].

When using linkable ring signatures in a blockchain
system for the sender of transactions one remaining question
is how to choose the other transactions in the anonymity set.
If they are chosen in a bad way the privacy will be likely to
suffer. Choosing the outputs in the anonymity set uniformly
at random from all outputs published in the blockchain poses
a risk, as older transactions are used in more ring signatures.
Thus, younger transactions in the anonymity set more likely
the output. Monero labs [23] deals with this issue in more
depth, but also fails to provide an adequate solution. The
impact on the current Monero system is analysed by Möser
et al. [24]. It remains an open question which distributions
are appropriate.

In summary, linkable ring signatures enforce sender
anonymity, also called untraceability [17] of transactions as all
identities included in the ring have the same probability of
being the real sender of the transaction. We use a variation
of LWW signatures, since these are comparatively short and
allow for linking signatures even if the other public keys in

the ring are different.

4.4.2 One-time Payment Addresses

The blockchain-based cryptocurrency CryptoNote [17] intro-
duced so called one-time payment addresses [25] which increase
privacy of the receiver by using different unlinkable recipient
keys.

Instead of simply referencing the recipient by its public
key, the sender derives a new temporary public key per
transaction output using a random nonce and the recipients
public key. The derived one-time public key, called destination
key and the original public key of the recipient are unlinkable
without knowledge of the private key associated with the
original public key. The recipient can recover the private key
corresponding to the destination key by using his private
key and a transaction public key which is included in the
transaction by the sender.

By signing with the recovered private key, the recipient
can prove that she was in fact the intended recipient and
thus spend the funds without revealing her identity, or that
the transaction belongs to her (long-term) public key.

More exactly, let G be an elliptic curve with generator G.
Let d ∈ {1, . . . , `} be the private key of the receiver, where `
denotes the group order of the elliptic curve. Q = dG is the
long-term public key of the recipient.

To send a transaction, the sender generates a one-time
recipient address as follows. First, the sender computes P =
eG, where e ∈ {1, . . . , `} is chosen uniformly at random. The

Page 5 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

sender defines the shared DH secret c := H(eQ) and sends
his transaction to the one-time public key Q′ = Q+ cG. The
transaction needs to include the additional information P
which is needed for the recipient to recover the private key
corresponding to Q′. Since

Q′ =Q+ cG = dG+H(eQ)G = dG+H(edG)G

=(d+H(dP))G

the recipient can recover the one-time private key d+H(dP)
corresponding to Q′.

The unlinkablity of two one-time keys derives from the
fact that cG is essentially a random offset which is added
to the long-term public key. The security of the scheme in
the sense that only the recipient can recover the private key
follows from the DL-assumption.

This scheme does not allow the delegation of the checking
of incoming transactions. As delegation would require
providing the private key to a third party. However this third
party would then be able to spend the funds. Delegation of
transaction processing is desired in an audit by a third party,
like a tax fraud investigation, or for low power devices.

In order to allow for the delegation of transaction check-
ing, a scan key pair and a spend key pair can be created.
The scan key pair is given to the third party which can then
check (but also link) the incoming payments. For spending
the transactions the spend key is still required.

Let d ∈ {1, . . . , `}, Q = dG be the private and public
scan key of the recipient, and f ∈ Z`, R = fG the private
and public spend key of the recipient. To send a transaction
the sender chooses e ∈ {1, . . . , `} at random as above and
computes P = eG. We define the shared DH secret c :=
H(eQ) = H(dP) as above. The sender now addresses his
transaction to R′ = R+ cG. Again, P needs to be included
as an additional information in the transaction.

In order to decide if the transaction is addressed to the
recipient only the private scan key d is needed to check if
R′ = R + H(dP)G. In order to spend the transaction the
private spend key f is needed, as R′ = (f + c)G the private
key corresponding to R′ is (f + c). Thus the checking of
incoming transactions can be delegated at the cost of privacy.

To summarize, our one-time payment addresses provide
unlinkable transactions [17] and transaction processing can be
delegated, without delegating the authorization to spend.

4.5 File Storage

Our system provides storage contracts to provide storage of
data. These contracts are realized as special transaction types,
where additional requirements need to be fulfilled to spend
the money. In order to set up a storage smart contract, a user
searches for a storage provider by broadcasting a storage
request. This storage request contains metadata like the file
size and storage duration. The storage providers answer
with their respective prices to fulfil the contract. The user
then sends the file to the storage provider of choice (e.g. the
cheapest). In parallel, the user creates and signs the storage
contract. This contract contains the file identifier and the
agreed storage duration. It is then included in the blockchain
like any other transaction. The data stored by the storage
provider is not published in any way.

The storage smart contract is a payment from the user to
the storage provider which can only be spent by the storage
provider, if it is able to prove storage of the data at the
beginning and at expiry of the contract.

This is realized by a cryptographic mechanism known
as proof of storage, explained in Section 4.5.2. The proofs of
storage are persisted in the blockchain, where they can be
verified by the miners, so that the user can spend the funds
after expiry if the proofs are not provided. These payment
rules are enforced by the miners due to the consensus
protocol of the blockchain. That means, if miners generate
blocks containing transactions where the storage provider
receives its payment despite not proving storage of the file
these transactions are rejected by the blockchain as long as
there is an honest majority of (hashing power of) miners.

Our description up to now only covers the storage of files.
There needs to be an additional mechanisms to allow users
to retrieve their files, which is explained in Section 4.5.3.

4.5.1 Lifecycle of Storage Smart Contracts

To store a file, the user searches a storage provider accepting
a file of the requested size for the given storage period c.
Both create a contract for the agreed price that can be spend
by a one-time key of the storage provider.

Next, the user generates a fresh public key pair pk and
sk and encodes the file according to Section 4.5.2. The secret
key sk is discarded afterwards, as knowledge of the secret
key would allow creating valid proofs of storage without
storing the file.

Afterwards the user publishes the final storage contract
consisting of a public key pk for the proof of storage, the
file identifier st , a refund address ref of the user, the storage
duration c and the payment transaction tx . This storage
contract will eventually be persisted in the blockchain by the
miners, after verifying the contract.

In a next step, the storage provider can see the contract
being persisted in the blockchain and accepts the file transfer.
The algorithm to store a file is given by Algorithm 1.

Algorithm 1 Storing a File
Input: User secret key skU , anonymity set size n, file f ,

storage duration c, one-time public key ref of the user
Output: a storage contract between the user U and an

anonymous storage provider, as well as a file transfer
1: (pk , sk)← Gen(1k) . Key generation for the PoS.
2: (f ′, st)← Encodesk (f) . Encode for the PoS.
3: (p, pkP)← find-SP(size(f ′), c)
. Find a storage provider and receive a price p and its
public key pkP , given the storage period and the size of
the file

4: tx ← generate-transaction(skU , pkP , p, n) . Cf. Sec. 4.4
5: publish(pk , st , ref , c, tx)
6: transfer(f ′) . To the storage provider

The refund address ref of the user is necessary to refund
the payment invested by the user in case the contract is
broken. To spend the refund, the user proves the breach of
the contract by referencing the broken storage contract. To
reduce validation costs, the transaction contains a hint which
proof of storage is missing: The first or the last one.

Page 6 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

In our storage smart contracts, a storage provider needs
to prove storage of the data once at the beginning of the
contract and once at contract expiry as shown in Figure 2.
The expiry proof of storage implies that the storage provider
had access to the data for the whole duration of the con-
tract. Precomputed proofs of storage are precluded, as the
challenge is derived from a block in a timeframe dependent
on the expiry date. The timeframe is necessary to deal with
latency issues.

To prevent a malicious storage provider from locking
funds of users for a long time, an additional proof is required
in the beginning. While the storage provider can still discard
the data, the storage provider had to at least store the data
once. Failing to store the data at all will refund the currency
of the user.

Theoretically, our design supports more complicated
clauses for storage contracts than two proofs of storage.
It is conceivable to design storage smart contracts where a
storage provider needs to prove storage, e.g., at two out of
five fixed points of time. As our design focusses on privacy,
we decided against these more flexible contracts. The more
unique the conditions in the smart contracts, the smaller the
size of the anonymity set. An overview of the contract life
cycle is given in Figure 2.

The proofs of storage transactions contain a reference
to the storage contract and a transaction fee for miners, as
they are published to the blockchain. To preserve storage
space occupied, the proofs themselves are not included in
the computation of the hash of the blocks. Thus the proofs
can be removed without changing the hashes of the blocks.
This means that the integrity of the proofs of storage is not
guaranteed, as it is only important to guarantee their validity.

This is not a problem, as it is still impossible to switch
already persisted valid proofs of storage by invalid ones,
as blocks containing invalid transactions would have been
discarded. Secondly, the integrity check coming from the
inclusion in the blockchain does not provide any guarantees
against malicious modification of the proof in transit.

4.5.2 Proofs of Storage
A proof of storage is a cryptographic proof generated by
a storage provider whereby it is able to prove possession
of a file. In our system, their size needs to be independent
of the file size of which storage is proven, ideally it should
be constant. To be used in the blockchain, proofs of storage
need to be publicly verifiable. To fulfil these requirements,
we use our own scheme [26]. We will now provide the formal
definition and more details about publicly verifiable proofs
of storage and then go on to explain its usage in our system.

Definition 3 (Proof of Storage ([27, Definition 5])). A
publicly verifiable proof of storage is a tuple of four algorithms
(Gen,Encode,Prove,Verify) with the following properties:
• (pk , sk)← Gen(1k) is a probabilistic algorithm that is run

by the client U to set up the scheme. Its input is a security
parameter k, and the output is a public and private key pair
(pk , sk).
• (f ′, st) ← Encodesk (f) is a probabilistic algorithm that

is run by the client in order to encode the file. It takes as
input the secret key sk , and a file f ∈ Z`B viewed as a vector
of chunks with fixed size B. It outputs an encoded file f ′

and state information st . The encoding can be thought of as
splitting the file and signing each chunk with a homomorphic
signature. In particular the encoding does not provide any
form of confidentiality. To achieve this, a client has to encrypt
the file appropriately before encoding it.

• π := Prove(pk , f ′, c) is a deterministic algorithm run by
the storage provider that takes as input the public key pk , an
encoded file f ′, and a challenge c ∈ {0, 1}•. The challenge is
expanded by a hash function to a set of indices of chunks and
corresponding coefficients. It outputs a proof π by combining
the chunks and the homomorphic signatures according to the
indices and coefficients from the challenge.

• b := Verify(pk , st , c, π) is a deterministic algorithm that
takes as input the public key pk , the state st , a challenge
c ∈ {0, 1}•, and a proof π. It outputs a bit, where ’1’
indicates acceptance and ’0’ indicates rejection by checking if
the aggregated signatures in the proof are a correct signature
for the aggregated chunks. The state st is used to check if the
aggregation was done over the correct chunks.

For correctness, we require that for all k ∈ N, all (pk , sk)
output by Gen(1k), all files f ∈ Z`B , all (f ′, st) out-
put by Encodesk (f), and all c ∈ {0, 1}•, it holds that
Verify (pk , st , c,Prove(pk, f ′, c)) = 1.

In a first step the user generates a public and secret key
pair. Then, the file is encoded by the user using its secret key
and the file. Intuitively this step corresponds to splitting the
file into chunks of sizeB and computing homomorphic linear
authenticators over each chunk which are then appended to
the file. Further, a state st is generated at the encoding step
which serves as a file identifier. The encoded file f ′ and the
file identifier st are uploaded to the storage provider. The
storage provider creates a proof by running the algorithm
Prove. For this, it uses the encoded file, a challenge value
c, and the public key pk of the user. The challenge c is
expanded by using it as a seed of a pseudorandom number
generator, and the chunks of the file are homomorphically
combined according to the expanded challenge. Since the
encoded file consist of homomorphic linear authenticators, a
linear combination of the linear authenticators is a valid
authenticator for a linear combination of the chunks of the
file. The proof of storage π consists of a linear combination of
chunks and a linear combination of the authenticators. The
coefficients used in the linear combination are the expanded
challenge.

The algorithm Verify is used to validate such a proof π.
the file identifier st , the challenge c, as well as the public key
pk of the user are required. There is no secret knowledge
involved and thus verification can be done by anybody.

To define the security property of proofs of storage [28],
[29], we use the security definition by Ateniese et al. [27].
There, soundness is formalized using a knowledge extrac-
tor [30], [31] as in [28], [29]. In particular our definition uses
so-called “witness extended emulation” [32].

Definition 4 (Security of a publicly verifiable proof of stor-
age ([27, Definition 6])). Let Π = (Gen,Encode,Prove,Verify)
be a publicly verifiable proof of storage. We say that Π is secure if
there is an expected polynomial time knowledge extractor K such
that for any ppt adversary A we have that:

Page 7 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

Proof, Fee Proof, Fee

File and
payment

MAD and
payment File

Further file retrievals Contract endFile retrieval using MAD transactionContract start and file transmission

Figure 2. Visualization of the contract life cycle and payments over time. Left to right: A user commits to a payment to the storage provider and
transmits its data. The storage provider provides a proof of storage which costs a small fee for the inclusion in the blockchain. This is repeated at
contract expiry. To retrieve the data an additional payment is made from the user to the storage provider as will be explained in Section 4.5.3.

1) The distributions (pk , sk)← Gen(1k); (f , stA)← AEncodesk (·)(pk);
(f ′, st)← Encodesk (f); c← Znp :

(c,A(stA, f
′, st , c))

and

(pk , sk)← Gen(1k); (f , stA)← AEncodesk (·)(pk);
(f ′, st)← Encodesk (f) :

KA(stA,f
′,st,·)

1 (pk , st)

are identical. K1 denotes the first output of K.

2) The following is negligible.

P

(pk , sk)← Gen(1k);

(f , stA)← AEncodesk (·)(pk);
(f ′, st)← Encodesk (f);

((c, π),f∗)← KA(stA,f
′,st,·)(pk , st) :

Verify(pk , st , c, π) = 1 ∧ f∗ 6= f

Informally, witness-extended emulation means that given

an adversary that produces a valid proof with some proba-
bility, there exist an emulator that produces a similar proof
with the same probability and at the same time provides a
witness, i.e., the file f ′.

The first property is a restriction on the output of the
knowledge extractor and guarantees that the knowledge
extractor produces the same proofs as the adversary with the
same probability. The second property guarantees that the
knowledge extractor can provide the witness when the proof
is correct, i.e., if the proof is accepted by the verifier then the
prover has access to the original file.

Remark 2 (Proofs of Storage, Proofs of Retrievability, and
Provable Data Possession). In the literature there are the related
notions of proof of retrievability, proof of storage and provable
data possession, which are used to describe similar but different
concepts.

A proof of retrievability [33], [34], [35], [36], [37], [38], [39],
[40], [41] is a challenge-response protocol that proofs that a file is
retrievable, i.e., recoverable without any loss or corruption. Proofs
of data possession [42], [43], [44], [45], [46] are related proofs
that still verify successfully if there is only a small amount of data
corruption. In a proof of data possession only the existence of a
knowledge extractor is required which can extract knowledge of the
file, whereas a proof of storage [27], [29], [47] additionally requires
the knowledge extractor to be computable in expected polynomial
runtime (cf. Definition 4). Our system could apply a proof of
retrievability or provable data possession, resulting in a weaker
security model.

Remark 3 (What a Proof of Storage is not). A proof of storage
does not guarantee confidentiality of the file, but this can be
achieved by standard cryptographic mechanisms as explained
in Section 6.

A proof of storage does not prevent modifications or loss
of the file, but the prover can not generate further valid proofs
without access to the full original file. To prevent modification or
loss of data, erasure codes can be applied. The original file cannot
be recovered by a proof of storage.

A proof of storage does not guarantee file retrievability. The
storage provider can deny other participants to retrieve the file from
him. There needs to be an additional incentive structure which is
described in Section 4.5.3.

For use in our system, the user generates a random key
pair used to encode its file. The corresponding secret key is
deleted. The public key is published in the storage contract
to allow for public verification of the proofs of storage.

Up to now we described interactive proofs of storage, but
actually we need a non-interactive proof of storage, since we
cannot assume the existence of a trusted challenger. Using the
Fiat-Shamir heuristic [48] we can substitute the challenger
by a source of randomness and consequently get rid of
the interaction. Concretely, the challenge c for the proof of
storage in our system is chosen as the hash of a block in the
blockchain at the time the proof is needed. Note that this
hash is not known in advance and thus the proof of storage
cannot be precomputed.

The generated proof of storage has to be persisted in the
blockchain in a predefined window of blocks after the block
which is used for the challenge. This is necessary to deal with
forks in the blockchain and since immediate persistence of
proofs in the blockchain cannot be guaranteed.

Miners do not need to persist the whole proof of storage.
When a miner receives a block containing a proof of storage,
it can verify the proof of storage using the public key pk
which was used for encoding the file and the file identifier
st , since this is included in the storage smart contract. When
the proof is invalid, the block is rejected. However, if the
proof is valid, the miner only needs to store that there was a
valid proof of storage of that file. Since the proofs themselves
are not included in the calculation of the hash of the block,
they can be removed without changing the hash of the block,
similar to the pruning of spent transactions in Bitcoin [4].

4.5.3 File Retrieval

Additionally to compensating storage providers for the
storage of files there needs to be an incentive to allow
retrieval of files.

Page 8 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Current protocols for exchange distinguish between
strong and weak fairness [49]. In weak fairness, an honest
participant can prove to an external arbiter that the other
participant has received the item it expected. This could be
used for a reputation system. As a reputation system is, due
to the lack of identities, infeasible, PriCloud requires strong
fairness. In strong fairness, at the time of protocol termination
either both participants get what they want or neither of them
does. It has been shown, that strong fairness of an exchange
is impossible without a trusted third party [50].

Currently known protocols for simultaneous and fair
exchange [51], [52], [53], [54] suffer from two main criticisms:
A participant can input garbage and still receive the item [55]
or the protocol can be aborted [56]. A straightforward
protocol does not satisfy strong fairness, as aborting in-
between exchange of payment and file, will leave one
participant with the expected item, payment or file, and
the other without anything.

We propose a simpler approach than Bitcoin, which
leaks a preimage of a hash [57], [58], [59], borrowing the
assumption of rational actors from game theory, which
is non-standard in the cryptographic literature. Despite
their different mechanisms, these fields have overlap in
collaborative interactions between distrusting parties [60],
[61], [62]. Thus, we think that our assumptions of rational
actors are justified.

To deter both parties from cheating we make use of
security deposits, as proposed in [63]. Our system utilizes a
special transaction for each file retrieval, called mutually as-
sured destruction (MAD) transaction, comparable to NASHX1

transactions.
To perform a MAD transaction, the user U and a storage

provider P provide respective security deposits DU and DP .
The user also provides a payment p for the data and cost
incurred by the storage provider during the file retrieval,
e.g., bandwidth. These funds are combined as inputs in a
transaction which both parties, U and P need to sign to
spent. In the next step the storage provider transmits the
file to the user. After receiving the data, the users check the
integrity of the file and if they received the correct one. To
release the funds, the user and storage provider sign the
payout transaction. The user and storage provider receive
their deposits DU and DP , while the storage provider also
receives the payment p. A graphical depiction of this process
is provided by Figure 3.

P
DP

''

P

DP+DU+p

P,U
//

DP+p

77

DU

''U

DU+p

77

U

Figure 3. A MAD transaction between a user U and a storage provider
P, including a payment p and deposits DU and DP .

The storage provider first creates the payout transaction
and signs it. This transaction is sent to the user who
broadcasts it into the network after signing herself.

1. http://nashx.com/HowItWorks

If the user or the storage provider cheat by not paying or
not transferring the file, the respective other party will refuse
to sign the second transaction and both parties lose their
security deposits. The same is true if the storage provider
transmits an incorrect file, as the user will not unlock the
funds. This leads to the payoff matrix shown in Figure 4.
In this figure, f denotes the value of the file. The two
strategy pairs (cheat, cheat) where both participants cheat
and (comply, comply) where both participants comply are
the Nash equilibria. However (comply, comply) weakly
dominates the other Nash equilibrium and thus will be
chosen by rational actors.

Storage Provider P
comply cheat

User U comply f − p, p −DU − p,−DP
cheat f −DU − p,−DP −DU − p,−DP

Figure 4. The payoff matrix for MAD transactions.

In theory it is possible that the user can hold the deposit
of the storage provider hostage: After the second transaction
and after receiving the file, the User refuses to sign the
multi signature transaction and instead creates a different
transaction granting a small non-negative amount ε to the
storage provider. The remaining amount DP +DU + p− ε is
given to the user. If the storage provider signs it, only DP−ε
is lost instead of the full deposit. A rational storage provider
would agree to this form of blackmailing.

In our approach, we prevent this blackmailing, since the
storage provider and not the user initiates the freeing of
funds. There are no further messages the software could
transmit or show a user. Thus, the user can either agree on
freeing the funds or lose its entire security deposit, but is
unable to play a third blackmailing strategy, as there are no
communication channels to communicate this blackmailing.

5 RELATED WORK

5.1 KopperCoin
KopperCoin [63] is a previous proposal of a peer-to-peer
storage with payment by us. Compared to the proposal in
this article, KopperCoin has no distinction between storage
providers and miners, since storing files is done by the
miners. In KopperCoin the mining process of a blockchain
is substituted by proofs of storage over data which has
previously been uploaded by users of the system. The file
over which a proof of storage needs to be computed is
determined by considering the hash of the previous block
in the blockchain as a file identifier. One major drawback of
KopperCoin is the lack of privacy guarantees, since miners
are linked to the files they store by their mining reward.

Storage in PriCloud is realized by contracts which do not
interfere with the mining process. This allows implementing
privacy enhancing mechanisms for storage contracts.

5.2 Permacoin and Retricoin
Permacoin [64] was the first approach to combine the ideas
of decentralized file storage and blockchain. Miners prove
retrievability of parts of a large digital archive where single

Page 9 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

miners are unlikely to have the resources to store the whole
archive. However, the digital archive is fixed at the time of
creation of the blockchain. Users cannot upload or download
data in contrast to our design. Retricoin [65] offers some
efficiency improvements over Permacoin but inherits their
main design decisions.

5.3 Filecoin

Filecoin is another blockchain-based decentralized storage
system where users can upload and download files and
pay for storage. They provide two suggestions as white
papers [66], [67].

In their first white paper, the proof of work process is
augmented by a proof of storage, such that there are two
proofs needed to mine a block, which urges miners to be also
storage providers. Files stored in Filecoin can only be used
for a reward up to an expiry date. Storage providers are not
incentivized to let a user access its data.

In the second white paper, the proof of storage was
replaced with a proof of replication, proofing that any
replica of data is stored in physically independent storage.
Filecoin also includes proofs of spacetime which guarantees
that data is stored throughout a range of time. However,
only the definitions are given. Even in their dedicated
technical report about proofs of replication [68] there is no
construction offered. Strikingly, Chapter 4 in this report is
called “Realizable Constructions (TODO)”.

For storing and retrieving files, Filecoin introduces two
markets. The order books are published on the blockchain,
allowing the miners to automate the settlement process.
However, some problems such as reordering the transactions
before persisting them in the blockchain to gain a financial
advantage (called frontrunning), are not addressed.

In both white papers the topic of privacy is not taken into
account. In summary, the publications of the Filecoin team
clearly do not constitute a working solution for the problem
of decentralized storage and leave many open questions.

5.4 Anonymous Storage Systems

There are a number of anonymous storage systems like
GNUnet [1], [69] or Freenet [2] which rely on voluntary
contribution of storage resources and bandwidth by its
participants. These systems focus on privacy. While GNUnet
is geared towards anonymous and censorship-resistant file
sharing, Freenet is envisioned as an anonymous replacement
for the Internet, for websites only static sites are possible.
Neither GNUnet nor Freenet offer remuneration for pro-
viding storage and thus their design made significantly
different trade-offs. For example routing in GNUnet is based
on the addresses of the files relying on a system based on a
distributed hash table, similar to Kademlia [70]. In Freenet
the files are replicated at each hop when they are routed
and thus clusters of addresses converge. There is no single
storage provider responsible for a specific file who could
be remunerated. Hence, there are no storage guarantees
in contrast to our system which provides financial storage
guarantees. In Freenet, data which is only rarely queried
slowly disappears from the system by design.

6 ADDITIONAL CONSIDERATIONS

So far we discussed the privacy of the blockchains layer,
e.g., unlinkability of transactions as they are stored in the
blockchain. However, focussing on this layer is not suffi-
cient [71]. This section discusses additional considerations on
other layers for the PriCloud system to be used in practice.

6.1 Files

A truly private file storage needs to ensure a file can only
be read by authorised entities. To reach this target, a strong
file encryption scheme is needed. These can be provided by
publicly available libraries, e.g., NaCl or dedicated software
such as MiniLock. The core PriCloud system is agnostic to
such systems but it is recommended to use such an addition,
since otherwise the storage providers, and everyone willing
to pay for the download, can read the contents.

6.2 Blockchain Transmissions

Interactions with the blockchain, such as creating transactions
or disseminating new blocks, typically use a peer-to-peer
network. This has consequences for the privacy: A well
connected peer, or a collusion of multiple peers, can identify
the originator’s IP address [72]. While the originator key
is protected by linkable ring signatures, IP addresses are
considered personally identifiable information and can be
used to track activities of users.

To prevent this identification of users, a privacy preserv-
ing broadcast mechanism is required. There are multiple
solutions available for this problem, including protocols
designed for blockchain broadcasts [73], [74].

6.3 File Transmissions

Contracts within the blockchain use the presented privacy
mechanisms, but actual file transmission will need to traverse
the network. Direct communication reveals the sender and
receiver and thus violates the privacy of the user and
storage provider. However, indirect communication might
leak information to arbitrary participants in the network.

To preserve anonymity, a privacy preserving file trans-
mission system is required. One possible solution is to
augment contract negotiations with information for a Tor [75]
rendezvous point for a hidden service, creating Tor commu-
nication tunnels for both participants. This provides sender
and receiver anonymity, subject to the limitations of the Tor
attacker model. A more integrated solution to the network
could be modelled after decentralized storage solutions
without financial incentives, e.g., GNUnet [1] or Freenet [2].

6.4 Summary

All considerations for PriCloud presented in this chapter
have many solutions which are already applied in real
world scenarios. Each of these solutions comes with their
own advantages and drawbacks that need to be evaluated
depending on the envisioned use case, especially trade-offs
of privacy and speed of operations.

Page 10 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

7 CONCLUSION

This article introduced PriCloud, a novel decentralized
distributed storage which allows users to pay storage
providers via an anonymous currency. A blockchain whose
transactions have been cryptographically hardened achieves
untraceability and unlinkability of payments. Storage smart
contracts which determine the storage duration are included
in the blockchain, thus allowing for automatic execution
of payments. The storage provider can spend its payment
from a contract if it produces a valid proof of storage of the
file specified in the contract at some specific points in time.
Hence, the storage provider only receives its payment, if it
has honestly stored the file of the user. Our PriCloud system
offers privacy-preserving financial rewards for participating
as a storage provider and thus provides incentives for
participation.

ACKNOWLEDGMENTS

This work was funded by the Baden-Württemberg Stiftung.

REFERENCES

[1] K. Bennett, T. Stef, C. Grothoff, T. Horozov, and I. Patrascu, “The
gnet whitepaper,” Purdue University, Technical report, 06 2002.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,”
in Designing Privacy Enhancing Technologies. Springer, 2001, pp.
46–66.

[3] H. Kopp, D. Mödinger, F. J. Hauck, F. Kargl, and C. Bösch, “Design
of a privacy-preserving decentralized file storage with financial
incentives,” in 2017 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW). IEEE, 2017.

[4] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
2009, https://bitcoin.org/bitcoin.pdf.

[5] F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 3, pp. 2084–2123, 2016.

[6] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in Cryptology — CRYPTO’ 92. Springer, 1993,
pp. 139–147.

[7] J. R. Douceur, “The sybil attack,” in Peer-to-peer Systems. Springer,
2002, pp. 251–260.

[8] J. Aspnes, C. Jackson, and A. Krishnamurthy, “Exposing
computationally-challenged Byzantine impostors,” Yale University
Department of Computer Science, Tech. Rep. YALEU/DCS/TR-
1332, 2005.

[9] M. Andrychowicz, S. Dziembowski, D. Malinowski, and
L. Mazurek, “Secure multiparty computations on bitcoin,” in IEEE
Symposium on Security and Privacy 2014. IEEE, 2014, pp. 443–458.

[10] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology–CRYPTO 2014. Springer,
2014, pp. 421–439.

[11] A. Kiayias, H.-S. Zhou, and V. Zikas, “Fair and robust multi-party
computation using a global transaction ledger,” in EUROCRYPT
2016: Int. Conf. on the Theory and Applications of Cryptographic
Techniques. Springer, 2016, pp. 705–734.

[12] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts,” in IEEE Symp. on Sec. and Priv. IEEE, 2016, pp.
839–858.

[13] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” 2014, http://gavwood.com/paper.pdf.

[14] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy,
G. M. Voelker, and S. Savage, “A fistful of bitcoins: characterizing
payments among men with no names,” in Conference on Internet
measurement. ACM, 2013, pp. 127–140.

[15] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin
transaction graph,” in Financial Cryptography and Data Security.
Springer, 2013, pp. 6–24.

[16] T. Okamoto and K. Ohta, “Universal electronic cash,” in Proceedings
of the 11th Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO ’91. Springer, 1992, pp. 324–337.

[17] N. van Saberhagen, “Cryptonote v 2.0,” 2013, https://cryptonote.
org/whitepaper.pdf.

[18] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,”
in Advances in Cryptology—ASIACRYPT 2001. Springer, 2001, pp.
552–565.

[19] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous anony-
mous group signature for ad hoc groups,” in ACISP. Springer,
2004, pp. 325–335.

[20] E. Fujisaki and K. Suzuki, “Traceable ring signature,” in Public Key
Cryptography–PKC 2007. Springer, 2007, pp. 181–200.

[21] S. Noether, “Ring signature confidential transactions for monero,”
Cryptology ePrint Archive, Report 2015/1098, 2015.

[22] S. Noether, A. Mackenzie et al., “Ring confidential transactions,”
Ledger, vol. 1, pp. 1–18, 2016.

[23] A. Mackenzie, S. Noether, and Monero Core Team, “Improving
obfuscation in the cryptonote protocol,” Tech. Rep., 2015, https:
//lab.getmonero.org/pubs/MRL-0004.pdf.

[24] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava,
K. Hogan, J. Hennessey, A. Miller, A. Narayanan et al., “An empiri-
cal analysis of traceability in the monero blockchain,” Proceedings
on Privacy Enhancing Technologies, vol. 2018, no. 3, pp. 143–163, 2018.

[25] S. Noether and S. Noether, “Monero is not that mysterious,” Tech.
Rep., 2014, https://lab.getmonero.org/pubs/MRL-0003.pdf.

[26] H. Kopp, F. Kargl, and C. Bösch, “Publicly verifiable static proofs
of storage: A novel scheme and efficiency comparisons,” in
Information and Communications Security, D. Naccache, S. Xu, S. Qing,
P. Samarati, G. Blanc, R. Lu, Z. Zhang, and A. Meddahi, Eds. Cham:
Springer International Publishing, 2018, pp. 459–477.

[27] G. Ateniese, S. Kamara, and J. Katz, “Proofs of storage from
homomorphic identification protocols,” in Advances in Cryptology–
ASIACRYPT 2009. Springer, 2009, pp. 319–333.

[28] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-
son, and D. Song, “Provable data possession at untrusted stores,”
in CCS ’07. ACM, 2007, pp. 598–609.

[29] H. Shacham and B. Waters, “Compact proofs of retrievability,”
Journal of cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[30] M. Bellare and O. Goldreich, “On defining proofs of knowledge,”
in Advances in Cryptology–CRYPTO’92. Springer, 1992, pp. 390–420.

[31] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of
identity,” Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[32] Y. Lindell, “Parallel coin-tossing and constant-round secure two-
party computation.” Journal of Cryptology, vol. 16, no. 3, 2003.

[33] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in CCS ’07. ACM, 2007, pp. 584–597.

[34] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter,
“Outsourced proofs of retrievability,” in SIGSAC. ACM, 2014, pp.
831–843.

[35] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability:
Theory and implementation,” in CCSW ’09. ACM, 2009, pp. 43–54.

[36] D. Cash, A. Kupcu, and D. Wichs, “Dynamic proofs of retrievability
via oblivious ram,” Cryptology ePrint Archive, Report 2012/550,
2012, http://eprint.iacr.org/.

[37] Y. Dodis, S. P. Vadhan, D. Wichs et al., “Proofs of retrievability via
hardness amplification.” in TCC, vol. 5444. Springer, 2009, pp.
109–127.

[38] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic proofs
of retrievability,” in SIGSAC. ACM, 2013, pp. 325–336.

[39] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability
and constant communication cost in cloud,” in Workshop on Security
in Cloud Computing. ACM, 2013, pp. 19–26.

[40] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud
computing,” in ESORICS. Springer, 2009, pp. 355–370.

[41] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,”
in Symp. on Inf., Comp. and Comm. Sec. ACM, 2012, pp. 79–80.

[42] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote data checking using provable
data possession,” TISSEC, vol. 14, no. 1, pp. 12:1–12:34, Jun. 2011.

[43] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in SecureComm ’08. ACM,
2008, pp. 9:1–9:10.

[44] Y. Zhang and M. Blanton, “Efficient dynamic provable possession
of remote data via balanced update trees,” in ASIA CCS ’13. ACM,
2013, pp. 183–194.

Page 11 of 21 Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://lab.getmonero.org/pubs/MRL-0004.pdf
https://lab.getmonero.org/pubs/MRL-0004.pdf
https://lab.getmonero.org/pubs/MRL-0003.pdf
http://eprint.iacr.org/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

[45] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp:
Multiple-replica provable data possession,” in ICDCS’08. IEEE,
2008, pp. 411–420.

[46] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable data
possession for integrity verification in multicloud storage,” IEEE
Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp.
2231–2244, 2012.

[47] J. Xu, A. Yang, J. Zhou, and D. S. Wong, “Lightweight and privacy-
preserving delegatable proofs of storage.” IACR Cryptology ePrint
Archive, vol. 2014, p. 395, 2014.

[48] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” pp. 186–194, 1987.

[49] N. Asokan, “Fairness in electronic commerce,” Ph.D. dissertation,
1998.

[50] H. Pagnia and F. C. Gärtner, “On the impossibility of fair exchange
without a trusted third party,” Technical Report TUD-BS-1999-02,
Darmstadt University of Technology, Department of Computer
Science, Darmstadt, Germany, Tech. Rep., 1999.

[51] M. Blum, “How to exchange (secret) keys,” ACM Trans. Comput.
Syst., vol. 1, no. 2, pp. 175–193, May 1983.

[52] M. Luby, S. Micali, and C. Rackoff, “How to simultaneously
exchange a secret bit by flipping a symmetrically-biased coin,” in
Proceedings of the 24th Annual Symposium on Foundations of Computer
Science, ser. SFCS ’83. IEEE Computer Society, 1983, pp. 11–22.

[53] T. Okamoto and K. Ohta, “How to simultaneously exchange secrets
by general assumptions,” in Proceedings of the 2Nd ACM Conference
on Computer and Communications Security, ser. CCS ’94. New York,
NY, USA: ACM, 1994, pp. 184–192.

[54] I. B. Damgård, “Practical and provably secure release of a secret
and exchange of signatures,” Journal of Cryptology, vol. 8, no. 4, pp.
201–222, 1995.

[55] E. F. Brickell, D. Chaum, I. B. Damgård, and J. van de Graaf,
“Gradual and verifiable release of a secret (extended abstract),”
in Advances in Cryptology — CRYPTO ’87, ser. Lecture Notes in
Computer Science, C. Pomerance, Ed. Springer, 1988, vol. 293, pp.
156–166.

[56] T. Tedrick, “Fair exchange of secrets (extended abstract),” in
Advances in Cryptology, ser. Lecture Notes in Computer Science.
Springer, 1985, vol. 196, pp. 434–438.

[57] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Towards fairness of
cryptocurrency payments,” CoRR, vol. abs/1609.07256, 2016.

[58] S. Delgado-Segura, C. Pérez-Solà, G. Navarro-Arribas, and
J. Herrera-Joancomartı́, “A fair protocol for data trading based
on bitcoin transactions,” Future Generation Computer Systems, 2017.

[59] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments
for services,” Commun. ACM, 2017.

[60] Y. Dodis and T. Rabin, “Cryptography and game theory,” Algorith-
mic Game Theory, pp. 181–207, 2007.

[61] G. Kol and M. Naor, “Cryptography and game theory: Designing
protocols for exchanging information,” Theory of Cryptography, pp.
320–339, 2008.

[62] G. Asharov, R. Canetti, and C. Hazay, “Towards a game theoretic
view of secure computation.” in EUROCRYPT, vol. 6632. Springer,
2011, pp. 426–445.

[63] H. Kopp, C. Bösch, and F. Kargl, “Koppercoin - a distributed file
storage with financial incentives,” in Information Security Practice
and Experience: 12th Int. Conf., ISPEC 2016, Proceedings. Springer,
11 2016, pp. 79–93.

[64] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin:
Repurposing Bitcoin Work for Data Preservation,” in IEEE Sym-
posium on Security and Privacy, 2014. IEEE, 2014, pp. 475–490,
http://cs.umd.edu/%7Eamiller/permacoin.pdf.

[65] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai, “Retricoin: Bitcoin
based on compact proofs of retrievability,” in Proceedings of the 17th
Int. Conf. on Distributed Computing and Networking, ser. ICDCN ’16.
ACM, 2016, pp. 14:1–14:10.

[66] filecoin.io, “Filecoin: A Cryptocurrency Operated File Storage
Network,” 2014, https://filecoin.io/filecoin-jul-2014.pdf.

[67] Protocol Labs, “Filecoin: A Decentralized Storage Network,” 2017,
http://filecoin.io/filecoin.pdf.

[68] ——, “Proof of replication,” 2017, https://filecoin.io/
proof-of-replication.pdf.

[69] C. Grothoff, K. Grothoff, T. Horozov, and J. T. Lindgren,
“An encoding for censorship-resistant sharing,” 2003. [Online].
Available: http://www.gnu.org/software/GNUnet/

[70] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[71] A. Biryukov and I. Pustogarov, “Bitcoin over tor isn’t a good idea,”
arXiv preprint arXiv:1410.6079, 2014.

[72] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisa-
tion of clients in bitcoin p2p network,” in Proc. of the ACM SIGSAC
Conf. on Comp. and Comm. Sec. (CCS). ACM, 2014, pp. 15–29.

[73] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath, “Dandelion:
Redesigning the bitcoin network for anonymity,” Proc. of the ACM
Measurement and Analysis of Comp. Sys. (POMACS), vol. 1, no. 1, pp.
22:1–22:34, Jun. 2017.

[74] D. Mödinger, H. Kopp, F. Kargl, and F. J. Hauck, “Towards
enhanced network privacy for blockchains,” in Proc. of the 38th
IEEE Int. Conf. on Distributed Computing Systems (ICDCS), 2018.

[75] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” DTIC Document, Tech. Rep., 2004.

Henning Kopp received his master’s degree
in mathematics at Technical University Kaiser-
slautern, Germany, in 2014. He successfully
defended his PhD in 2018 at the Institute of
Distributed Systems at Ulm University, Germany,
in the area of applied cryptography and its in-
tersection with computer security and privacy.
Currently, he is employed at the IT Security
company SCHUTZWERK GmbH.

David Mödinger received his B.S. (2012) and
M.S. (2015) from Ulm University, Germany. Cur-
rently he is with the Institute of Distributed Sys-
tems at Ulm University as a research and teach-
ing assistant, pursuing his doctorate degree.

Franz J. Hauck earned his dissertation in 1994
and his habilitation in 2001 from the University
of Erlangen-Nürnberg, interrupted by a one year
stay at the Vrije Universiteit Amsterdam. Since
2002 he is professor at and deputy director of the
Institute of Distributed Systems at Ulm University,
Germany. His research interests are middleware
systems for special purposes, recently for fault tol-
erance, scalability, weak real-time requirements,
and privacy. Prof. Hauck is a member of the ACM
and the German Computer Society, GI.

Frank Kargl is the director of the Institute of
Distributed Systems at Ulm University. His re-
search interests include system security and
privacy engineering and he is particularly eager
to demonstrate that strong privacy guarantees
do not necessarily limit system functionality. Prof.
Kargl is a member of the ACM, IEEE and the
German Computer Association GI.

Page 12 of 21Transactions on Dependable and Secure Computing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://cs.umd.edu/%7Eamiller/permacoin.pdf
https://filecoin.io/filecoin-jul-2014.pdf
http://filecoin.io/filecoin.pdf
https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf
http://www.gnu.org/software/GNUnet/

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

