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1 Introduction

Gabidulin codes are the rank-metric equivalent of the widely used Reed–Solomon
codes. Gabidulin codes are considered for random linear network coding, as in
[KK08], and public key cryptography systems, as in [BL05]. Especially the applica-
tion of random linear network coding inspires the use of interleaving in this thesis.

While there are different decoding schemes for Gabidulin codes, module minimi-
sation brings a more straight forward approach, allowing easier proofs and under-
standing of the decoding process, and a generalised approach over a multitude of
codes.

The goal of this thesis is to give an overview of the concept and add to it over gener-
alised non–commutative polynomials and give a complexity estimate for the special
case of Gabidulin codes. This is done by adding an algorithm to perform module
minimisation over non–commutative polynomials and analysing its performance on
decoding of (interleaved) Gabidulin codes.

Overview of the thesis

Chapter 2 introduces the necessary mathematical fundamentals used throughout
the thesis. This includes an introduction to finite fields, linearised polynomials, Ore
extensions and modules.

Chapter 3 gives a brief overview over the coding theory fundamentals of Reed–
Solomon codes and, the main application of this thesis, Gabidulin codes.

In Chapter 4 two known algorithms for non–commutative polynomials are exam-
ined: A review of the Mulders–Storjohann algorithm and the improved demand
driven variant for decoding. This chapter also introduces the restrictions for the
complexity analysis of the algorithms and common factors.

Based on the results of the previous chapter, in Chapter 5 a divide and con-
quer variant of Mulders–Storjohann, Alekhnovich’s algorithm, is converted to non–
commutative polynomials. Alekhnovich’s algorithm is then analysed under the re-
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1 Introduction

strictions for decoding resulting in a much more detailed complexity for this problem.

Chapter 6 examines the implication of a sub–quadratic decoding algorithm for
non–interleaved Gabidulin codes, based on the analysis done in Chapter 4.

Chapter 7 summarizes the analysis of Chapter 4 and its implications in Chapter 6.
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2 Mathematical Fundamentals

This chapter consists of two parts. In the first part, Section 2.1 to Section 2.4
necessary mathematical tools for this thesis are introduced, starting with finite fields
in Section 2.1. Then Section 2.2 introduces linearised polynomials, a special ring
of polynomials, which are further generalised to Ore extensions in Section 2.3. In
Section 2.4 the concepts of modules and module minimisation are examined.

2.1 Finite Fields

Finite fields are a fairly well studied field of mathematics, so this section only re-
visits the notation for them. For a thorough introduction to finite fields refer to
[LN96]. If not stated otherwise, the implicit operations are regular addition ⊕ and
multiplication �.

2.1.1 Prime Fields

Let p be a prime, then a finite field with p elements exists and has the notation Fp.
It is isomorphic to the integers modulo p

Fp ∼= Z/pZ = {0, 1, . . . , p− 1}.

2.1.2 Extension Fields

Let q = pn be a prime power for some n ∈ N and f ∈ Fq[x] be a polynomial which
is irreducible over Fq with deg f = m ∈ N then

Fqm ∼= Fq[x]/〈f(x)〉

is a field with qm elements and characteristic p. [LN96] explains that for any m
such an irreducible polynomial exists and that all fields with equal cardinality are
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2 Mathematical Fundamentals

isomorphic. So the structure of the field of size qm is independent of the chosen
polynomial.

Example 2.1.1 (Extension Field F23)
As an example we examine F23 defined by m = 3, f(x) = x3 +x+1 and F2 = {0, 1}.
It is

F23 = F2[x]/〈x3 + x+ 1〉.
The elements of F23 can be determined by using a root of f(x). As f(x) is irreducible
over F2 there are no roots within F2. We solve

x3 + x+ 1 = 0

⇐⇒ x3 = −x− 1

⇐⇒ x3 = x+ 1

and call a solution to this equation α. The resulting elements are listed in Table 2.1,
they are transformed using the relation α3 = α + 1.

Nr. α Representation Transformation Representation
0 = 0 = 0
1 = α0 = 1
2 = α1 = α
3 = α2 = α2

4 = α3 (defining relation) = α + 1
5 = α4 = α3α = (α + 1)α = α2 + α
6 = α5 = α3α2 = (α + 1)α2 = α2 + α + 1
7 = α6 = α3α3 = (α + 1)2 = α2 + 1

Table 2.1: Elements of F23 using the relation α3 = α + 1.

The ext Mapping

Using a basis β of Fqm over Fq, Fqm can be represented as a vector space over Fq. A
vector of elements can therefore be represented as a matrix over Fq. This translation
is done by the ext mapping.

Definition 2.1.1 (ext β Mapping)
The ext mapping is a function ext β : Fnqm −→ Fm×nq related to a basis β of Fqm over
Fq with a fixed order. Let a ∈ Fnqm and, β ∈ Fmqm with β a basis of Fqm over Fq. The
mapping extβ fulfils the equation

a = β · ext β(a) = β ·A. (2.1)

4



2.2 Linearised Polynomials

The ext β(x) mapping might be noted as ext (x) without explicitly mentioning the
basis β, whenever the basis is implicit or not of importance to the problem at hand.

Equation (2.1) contains a trivial inverse for the ext mapping: Multiplication by
the basis vector β. As ext conserves the structure of the underlying field, it is
also an isomorphism. The mapping and its inverse allow switching between matrix-
and field–representation for elements and vectors of elements. Depending on the
problem, the more convenient representation might be used without explicit mention
of the mapping.

Example 2.1.2 (ext Mapping)
Using some basis β = (1, α, α2) and γ = (α3, α6, α5) of F23, Table 2.2 shows the
results for the ext mappings.

x ∈ F23 Transformed Representation ext β(x) ∈ F3×1
2 ext γ(x) ∈ F3×1

2

0 = 0 ext β → (0, 0, 0)T ext γ → (0, 0, 0)T

1 = 1 ext β → (1, 0, 0)T ext γ → (1, 1, 1)T

α1 = α ext β → (0, 1, 0)T ext γ → (0, 1, 1)T

α2 = α2 ext β → (0, 0, 1)T ext γ → (1, 0, 1)T

α3 = α + 1 ext β → (1, 1, 0)T ext γ → (1, 0, 0)T

α4 = α2 + α ext β → (0, 1, 1)T ext γ → (1, 1, 0)T

α5 = α2 + α + 1 ext β → (1, 1, 1)T ext γ → (0, 0, 1)T

α6 = α2 + 1 ext β → (1, 0, 1)T ext γ → (0, 1, 0)T

Table 2.2: The ext β function mapping with β = (1, α, α2) and ext γ function
mapping with γ = (α3, α6, α5). T symbolises transposition.

One important property of the ext mapping is the following behaviour of its inverse:

ext −1(AB) = β(AB) = βA ·B = ext −1(A) ·B.

2.2 Linearised Polynomials

While the general ring of polynomials over finite fields F[x] is a commutative ring,
there are special polynomial rings which are not. One of those, is the ring of lin-
earised polynomials, which will be used in Section 3.2 to describe Gabidulin codes.

5



2 Mathematical Fundamentals

Definition 2.2.1 (Linearised Polynomials)
The set of linearised polynomials (or q-polynomials) over a finite field Fqm is the set

Lq[x] = {f(x)}

with ai ∈ Fqm, df ∈ N the degree of f and f(x) of the form

f(x) =

df∑
i=0

aix
[i]

= a0x+ a1x
q + a2x

q2 + . . . + adfx
q
df
,

where the operator [i] = qi is the q-power operator.

2.2.1 Operations on Linearised Polynomials

Although similar, linearised polynomials have some deviations from definitions of
regular polynomials.

Degree

The degree of a linearised polynomial f is given by the function degq instead of deg
and it is degq f = logq(deg f), as the degq is defined by

f(x) =

df∑
i=0

fix
[i], fdf 6= 0⇒ degq f = df .

Addition

Just like regular polynomials, linearised polynomials are closed under addition and
addition is carried out element–wise:

df∑
i=0

fix
[i] +

dg∑
i=0

gix
[i] =

max{df ,dg}∑
i=0

(fi + gi)x
[i].
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2.2 Linearised Polynomials

Multiplication

Linearised polynomials differ from regular polynomials as they are not closed under
regular multiplication. It is generally not true that

f, g ∈ Lq[x]⇒ f · g ∈ Lq[x].

Hence, symbolic multiplication in the form of composition is used for linearised
polynomials:

f(x)� g(x) = f(g(x)).

2.2.2 Properties of Linearised Polynomials

There are some properties of linearised polynomials, that are important to note for
later usage.

Fq–Linearity [WZ13, Lemma 2.8]

For all a1, a2 ∈ Fq and all b1, b2 ∈ Fqm and f(x) ∈ Lq[x] it holds, that

f(a1b1 + a2b2) = a1f(b1) + a2f(b2). (2.2)

Roots of Linearised Polynomials [Ber84]

Roots of linearised polynomials are a linear subspace of Fqm over Fq and each root
has a multiplicity of a power of q.

Minimal Subspace Polynomial [LN96]

Let U be a set of elements and 〈U〉 the linear closure of U , then the minimal subspace
polynomial

MU =
∏
α∈〈U〉

(x− α)

is a unique q-polynomial, containing every element of α ∈ 〈U〉 as a root with multi-
plicity one.

7



2 Mathematical Fundamentals

2.2.3 Modulo Minimal Subspace Polynomial

For the key equation for Gabidulin codes, it is useful to have a simple sufficient
condition for modulo equivalence for minimal subspace polynomials.

Theorem 2.2.1
Two q-polynomials f, g ∈ Lq[x] are equivalent modulo a minimal subspace polynomial
MU , if for all roots u of MU they evaluate the same f(u) = g(u).

(∀u ∈ Fqm : MU(u) = 0⇒ f(u) = g(u))⇒ f ≡ g mod MU .

Proof. As Lq[x] is a right–euclidean ring, as shown by [Ore33] (cf. Theorem 2.3.1),
there always exist q-polynomials r and q for two q-polynomials a and c such that

a = q · c+ r

degq r < degq c.

Assume r 6= 0. We consider the sets M = {x : MU(x) = 0} and R = {x : r(x) = 0},
the sets of unique roots of MU and r. Due to its construction, the minimal subspace
polynomial MU consists solely of unique factors with degree 1 and multiplicity 1.
Therefore MU has degMU many roots and M = qdegq MU . It is known that r has at
most qdegq r many roots, so it follows, that |R| <= qdegq(r).

Suppose that M\R 6= {}, so there exists a root of MU that is not a root of r. For
such a root x of MU :

0 = (a− b)(x)

= (d(MU) + r)(x)

= d(MU(x)) + r(x)

(∗)
= d(0) + r(x)

= r(x) 6= 0.

This is a contradiction. Step (∗) uses the condition of Theorem 2.2.1, which states,
that a root of MU is also a root of a− b. Thus M ⊆ R⇔ |M | ≤ |R| has to be true.
But this leads to

|M | ≤ |R| ≤ qdegq r < qdegq MU = |M |,
which is a contradiction, too. It follows, that r = 0. An equivalence modulo a
linearised polynomial is equivalent to a division without remainder. The equivalence
of f, g can therefore be rewritten:

f ≡ g mod MU

⇔ ∃d ∈ Lq[x] : f − g = d ·MU .

As r = 0 the theorem is proven.

8



2.3 Ore Extension

2.3 Ore Extension

Ore extensions were introduced by [Ore33] and allow for a more general approach
to non–commutative polynomials and not just linearised polynomials. They are
a general form of non–commutative polynomials. A short introduction will help
understand the usage of Ore extensions and why they are used.

Definition 2.3.1 (Ore Extension [Ore33])
Let F be a field, then R = F[x; θ; δ] is a non–commutative ring of polynomials. Let
f, g ∈ R, a ∈ F and n,m ∈ N, then

f ⊕ g =

max{deg f,deg g}∑
i=0

(fi + gi)x
i,

x� a = θ(a) · x+ δ(a),

xmxn = xm+n,

together with the field operations, are the operations of R.

The operation θ is called conjugate and the operation δ is called derivative. From
Definition 2.3.1 [Ore33] derived some properties that need to be fulfilled by θ and
δ. They are listed in Table 2.3 for a, b ∈ F.

⊕ �
θ : θ(a+ b) = θ(a) + θ(b) θ(ab) = θ(a)θ(b)
δ : δ(a+ b) = δ(a) + δ(b) δ(ab) = θ(a)δ(b) + δ(a)b

Table 2.3: Derived conditions for θ and δ by [Ore33].

For two monomials axm and bxn with a, b ∈ F and m,n ∈ N this results in the
product:

axmbxn = axm−1 xb︸︷︷︸
Ore�rule

xn

= axm−1(θ(b)x+ δ(b))xn

= a xm−1θ(b)︸ ︷︷ ︸
Further Ore�

xn+1 + a xm−1δ(b)︸ ︷︷ ︸
Further Ore�

xn.

The following example should help understand the usage of Ore multiplication for
two small Ore polynomials.
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2 Mathematical Fundamentals

Example 2.3.1 (Ore Extension Multiplication Behaviour)
Let a = a1x

2+a2x+a3, b = b1 ∈ F[x; θ; δ] be two polynomials of some Ore extension.
Then the multiplications of those polynomials, c = a · b and d = b · a have the form:

b · a = b1a1︸︷︷︸
=c1

x2 + b1a2︸︷︷︸
=c2

x+ b1a3︸︷︷︸
=c3

a · b = a1x
2b1 + a2xb1 + a3b1

= a1(x xb1︸︷︷︸
� by Ore rule

) + a2( xb1︸︷︷︸
� by Ore rule

) + a3b1

= a1(x(θ(b1)x+ δ(b1))) + a2(θ(b1)x+ δ(b1)) + a3b1

= a1( xθ(b1)︸ ︷︷ ︸
� by Ore rule

x+ xδ(b1)︸ ︷︷ ︸
� by Ore rule

) + a2θ(b1)x+ a2δ(b1) + a3b1

= a1((θ(θ(b1))x+ δ(θ(b1)))x+ θ(δ(b1))x+ δ(δ(b1))) + a2θ(b1)x+ a2δ(b1) + a3b1

= a1(θ
2(b1)x

2 + δ(θ(b1))x+ θ(δ(b1))x+ δ2(b1)) + a2θ(b1)x+ a2δ(b1) + a3b1

= a1θ
2(b1)︸ ︷︷ ︸

=d1

x2 + (a1δ(θ(b1)) + a1θ(δ(b1)) + a2θ(b1))︸ ︷︷ ︸
=d2

x+ a1δ
2(b1) + a2δ(b1) + a3b1︸ ︷︷ ︸

=d3

.

This also shows that the multiplication is not commutative in general.

In [Ore33, Section 2] Ore shows that polynomials of Ore extensions are right divisible
with remainder. Ore concludes, that Ore extensions support some right euclidean al-
gorithm and therefore constitute an Euclidean domain. Left division is only possible
if θ is an F−automorphism, see [Ore33, Theorem 6].

2.3.1 Isomorphism of Linearised Polynomials and some Ore
Extension

To be able to use the results acquired with Ore extensions, linearised polynomials
need to be isomorphic to some Ore extension.

Theorem 2.3.1
The set of linearised polynomials over a finite field F is isomorphic to the Ore ex-
tension using the Frobenius automorphism θ(a) = aq and the derivative δ(a) = 0 for
a ∈ F:

F[x;xq; 0] ∼= Lq[x].
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2.3 Ore Extension

Proof. The conjugate θ and derivative δ fulfil the conditions of Table 2.3:

θ(a+ b) = (a+ b)q
(∗)
= aq + bq = θ(a) + θ(b)

δ(a+ b) = 0 = 0 + 0 = δ(a) + δ(b)

θ(ab) = (ab)q = aqbq = θ(a)θ(b)

δ(ab) = θ(a)δ(b) + δ(a)b = 0

The only step needing extra caution is (∗), which is allowed due to the characteristic
p|q and the binomial theorem for finite fields.

Now consider φ : F[x;xq; 0] −→ Lq[x], which is defined by the mapping

φ :
d∑
i=0

aix
i −→

d∑
i=0

aix
[i].

For φ : F[x;xq; 0] −→ Lq[x] with u, v ∈ F[x;xq; 0] to be an isomorphism the following
four conditions need to be fulfilled:

φ is bijective, (2.3)
φ(1F[x;xq ;0]) = 1Lq [x], (2.4)
φ(u+ v) = φ(u) + φ(v), (2.5)
φ(u · v) = φ(u) · φ(v). (2.6)

Equation (2.3), φ being bijective, is shown using the inverse φ−1:

φ−1 :Lq[x] −→ F[x;xq; 0]

d∑
i=0

aix
[i] −→

d∑
i=0

aix
i.

As φ−1(φ(a)) = a for a ∈ F[x;xq; 0] and φ(φ−1(b)) = b with b ∈ Lq[x], it follows,
that φ is bijective.

Equation (2.4) is fulfilled: φ(1F[x;xq ;0]) = φ(x0) = x[0] = x = 1Lq [x].

11



2 Mathematical Fundamentals

Equation (2.5) can be shown by transformation:

φ(u+ v) = φ(

max {du,dv}∑
i=0

(ui + vi)x
i)

=

max {du,dv}∑
i=0

(ui + vi)x
[i]

=
du∑
i=0

uix
[i] +

dv∑
i=0

vix
[i]

= φ(u) + φ(v).

Equation (2.6) can be shown by a slightly more complex transformation:

φ(u · v) = φ((
du∑
i=0

uix
i) · (

dv∑
j=0

vjx
j))

= φ(
du∑
i=0

uix
i

dv∑
j=0

vjx
j) = φ(

du∑
i=0

ui

dv∑
j=0

xivjx
j)

= φ(
du∑
i=0

ui

dv∑
j=0

vqjx
i−1vjx

j+1) = φ(
du∑
i=0

ui

dv∑
j=0

vq
i

j x
i+j)

=
du∑
i=0

ui

dv∑
j=0

v
[i]
j x

[i+j] =
du∑
i=0

ui

dv∑
j=0

(vjx
[j])[i]

(∗)
=

du∑
i=0

ui(
dv∑
j=0

vjx
[j])[i]

= φ(u)(φ(v))

= φ(u) · φ(v).

Step (∗) follows due to the characteristic p|q and the binomial theorem for finite
fields, seen in the first step.

Thus φ is an isomorphism and Theorem 2.3.1 is true.

Every result for Ore extensions can therefore be transformed and applied to lin-
earised polynomials. As θ(a) = aq is an automorphism, Lq[x]is also left divisible.
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2.4 Modules and Module Minimisation

Vectors of polynomials are no usual vector spaces, as polynomials are elements of
rings instead of fields. The resulting objects are called modules.

2.4.1 Modules

Modules are a generalisation of vector spaces for rings. If their elements are vector–
like elements of Rn, they will still be called vectors within this thesis. This section
will revisit some known properties of modules from [Art91, Chapter 12].

Definition 2.4.1 (Left Module)
Let R be a, not necessarily commutative, ring with one. A left R–module consists of
some commutative additive group M and an operation, with a, b ∈ R and v, u ∈M ,
satisfying:

1v = v

(ab)v = a(bv)

(a+ b)v = av + bv

a(v + u) = av + au.

This definition is analogue to vector spaces. Some important difference between
vector spaces and modules is the non existence of a basis for most modules. Modules
with a basis are called free modules. For modules isomorphic to a vector–like module
of the form Rn the Theorem 2.4.1 follows.

Theorem 2.4.1
Let R be some, not necessarily commutative, ring. For any n ∈ N the module Rn is
a free (left- or right-) module.

Proof. Let 1 be the one element of R. A basis B of Rn is then B = {bi : 1 ≤ i ≤ n}
with bi zero everywhere but position i, where it is one:

B = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

From now on, the considered module is some module Rn over polynomials, either
regular or q-polynomials. This module is a free module and has a basis.

13
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2.4.2 Module Minimisation

Module minimisation is the method of finding a reduced basis for a module consti-
tuting of the shortest vectors of the module. For polynomial modules the shortest
vectors are considered based on their degree.

Definition 2.4.2 (Degrees of Vectors and Matrices)
Let v ∈ F[x; θ; δ]n be a polynomial vector with vi the i-th position in v. Let further
M ∈ F[x; θ; δ]l×n be a polynomial matrix with mi the i-th row of M. Their respective
degrees are then:

deg v = max{deg vi : 1 ≤ i ≤ n},

degM =
l∑

i=0

degmi.

A useful measurement for polynomial vectors is the leading position, which connects
the degree of a vector with its degree defining elements.

Definition 2.4.3 (Leading Position)
The leading position LP of a vector v ∈ F[x]n is defined by

LP (v) := max{i : deg v = deg vi}.

Informally, the leading position in a row vector is the polynomial of highest degree.
If this is ambiguous, the right most position of those highest degree polynomials is
used. Using this definition of a leading position, [MS03] defines the weak Popov
form.

Definition 2.4.4 (Weak Popov Form)
A matrix M ∈ F[x]n×m is in weak Popov form, if all leading positions of non–zero
rows are different.

Example 2.4.1 (Weak Popov Form and Leading Positions)
The matrix A is not in weak Popov form. This can be seen in the degree matrix B
with bi,j = deg ai,j, a matrix containing the degrees of corresponding polynomials of
A. Leading positions and their corresponding degree are marked. There is a conflict
between row one and row three.

A =

x2 + 1 x2 x2 + x

x5 x2 + x x+ 1

0 0 1

 , B =

 2 2 2

5 2 1

−∞ −∞ 0



14
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A basis in weak Popov form, following [Ale05, Proposition 2.3], will result in the
shortest vector being part of the basis.

Theorem 2.4.2
Let M ∈ F[x; θ; δ]l×n be some basis in matrix form in weak Popov form. Any non–
zero row m of M with minimal degree is the shortest vector.

Proof. Assume a vector

v =
l∑

i=0

cimi (2.7)

with deg v < degm. Consider row mi with degmi maximal within M and ci 6= 0.
If there are several with this quality, consider the vector mi of those with maximum
degree, with maximum leading position. As M is in weak Popov form, this is
uniquely possible, as all leading positions are distinct.

The factor cimi has to cancel out in the sum of Equation (2.7). For this to happen,
another row mj, j 6= i is needed. But as mi was the unique vector with maximum
degree at this position, a factor cjmj would increase or keep the degree as deg cjmj ≥
deg cimi at a different position.

To utilise this method, an algorithm is needed to transform a given basis into weak
Popov form.

Theorem 2.4.3
There exists at least one algorithm to transform an arbitrary basis into a basis in
weak Popov form.

An algorithm is given by [MS03] for usual polynomials. For Ore extension polyno-
mials [LNPS15] gives two algorithms. This method will be utilised in the following
sections on Reed–Solomon and Gabidulin codes to find a shortest vector solution
within a space of solutions.

2.5 Determinant and Orthogonality Defect

For a more detailed complexity analysis of the algorithms a concept of determinant
of matrices over non–commutative rings is useful, as it allows further restrictions.
But the determinant is only defined over fraction fields. This section will revisit
already known results, that show the existence of a determinant and some useful

15
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properties, as well as one important conclusion. For a more explicit version confer
[LNPS15, Section 4.1].

2.5.1 Existence of a Determinant

The determinant will be defined over a fraction field, so the Ore extension needs
to be extended to some fraction field. [Coh95] examines Ore extensions and skew
polynomials in Section 1.3 and 2.1.

In [Coh95, Section 1.3], it is shown that left Ore principal ideal domain can be
embedded in a fraction field Q. As mentioned in Section 2.3, F[x; θ; δ] fulfils these
conditions for δ = 0 and the Frobenius automorphism θ(a) = aq.

The important measurement of degrees has to be extended to the fraction fields, as
it will be the main evaluation criteria for the determinant.

Definition 2.5.1 (Degree in Fraction Field [LNPS15])
The degree of a ring R can be easily extended to the fraction field Q by the formula:

deg(g−1f) = deg f − deg g.

Using the existence of an embodiment of some Ore extension fulfilling the conditions,
the following theorem, a part of [Ros94, Theorem 2.2.5], introduces the determinant
and some important properties. The determinant used is called the Dieudonné
determinant.

Lemma 2.5.1
Let I, A,B ∈ Qn×n be some quadratic matrices over a not necessarily commutative
fraction field over a left Ore ring R and a, b ∈ Q elements of the fraction field of R.
Further let φ be a function specified by [Ros94, Theorem 2.2.5 (c)] with the property
deg φ(f) = deg f . There exists a function det : Qn×n −→ Q having the following
properties:

1. det I = 1, where I is the identity matrix.

2. If a matrix B is created from some matrix A by adding a left multiple of one
row to another row, then detB = detA.

3. If a matrix B is created from some matrix A by left multiplying one of the
rows by a, then detB = φ(a) detA.

4. If a matrix B is created from some matrix A by interchanging two rows, then
detB = φ(−1) detA.

16
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Lemma 2.5.1(4) follows, that the degree of the determinant is invariant regarding
row interchanging, as deg φ(−1) = 0.

2.5.2 Orthogonality Defect

Based on the determinant the orthogonality defect can be defined.

Definition 2.5.2 (Orthogonality Defect [LNPS15])
The orthogonality defect is defined by

∆M = degM− deg detM.

There is an important connection between the orthogonality defect and the weak
Popov form of a matrix described by [Nie13a] and applied for the Dieudonné deter-
minant by [LNPS15, Lemma 7] which is restated in the following Theorem 2.5.1.

Theorem 2.5.1
Let M ∈ Qn×n, with Q being the fraction field of some left Ore ring, be some matrix
in weak Popov form. It then holds, that:

∆M = 0.

Proof. As M is over the fraction field, left inverse elements exist.

Lemma 2.5.1(4) allows interchanging of rows, so that the leading positions are on
the diagonal, without interfering with the degree of the determinant.

Using Lemma 2.5.1(2), the matrix can be transformed to upper triangular form
using elementary row operations. This is possible, due to the matrix being defined
over a fraction field and the existence of left inverses. As the leading positions are
all different, the product to zero out an entry has a degree lower than the leading
positions right of the target row’s leading position and as the leading position.

Up to this point, the degrees of the leading positions are preserved and they are still
on the diagonal.

The matrix is now in upper triangular form with leading positions still on the diag-
onal. Starting from the bottom using elementary row operations, this matrix can be
transformed into a diagonal matrix. If a row is used for an elementary row opera-
tion, every entry besides the diagonal element is zero. This will preserve the degree
of the diagonal elements and the determinant, as it uses Lemma 2.5.1(2).
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The diagonal matrix can be created from the identity matrix I by multiplying every
row with the corresponding diagonal element. As Lemma 2.5.1(1) states, the identity
matrix has deg det I = 1. Lemma 2.5.1(3) allows multiplying a row by an element
and furthermore the determinant can be calculated by detB = φ(a) detA.

Repeated application of this results in detU = (
∏n

i=1 φ(Ui,i)) det I. Applying the
degree function will result in:

deg detM = deg((
n∏
i=1

φ(Mi,i)) det I︸︷︷︸
=1

)

= deg(
n∏
i=1

φ(Mi,i)) + deg det I︸ ︷︷ ︸
=0

=
n∑
i=1

deg φ(Mi,i).

As the degree of the diagonal elements is equivalent to the degree of the leading
positions in the beginning, it is:

deg detM =
n∑
i=1

deg φ(Mi,i) =
n∑
i=1

degLP (Mi) =
n∑
i=1

degMi = degM.

The theorem follows.

Another conclusion of the final steps is the following lemma.

Lemma 2.5.2
A matrix M in upper triangular form has a degree of its determinant

deg detM =
n∑
i=1

degMi.

This theorem and lemma and the orthogonality defect will prove useful during com-
plexity analysis in Chapter 4.
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The algorithms examined in this thesis are evaluated for decoding of Gabidulin
codes, which are introduced in Section 3.2. As they are the rank metric equivalent
of the wide spread Reed–Solomon codes, Reed–Solomon codes are introduced in
Section 3.1, too.

3.1 Reed–Solomon Codes

Reed–Solomon codes are widely used in many products and specifications. They are
used for QR–codes [ISO06], audio discs, the voyager space probes [Wic94] and many
more. Within this thesis they are used due to their similarities to Gabidulin codes.
Also, the decoding algorithm of interest stems from Reed–Solomon codes and has
been applied to Gabidulin codes recently.

Reed–Solomon codes are widely studied and part of many books on coding theory.
A source of information on them is [Rot06].

Definition 3.1.1 (Generalised Reed–Solomon Code [Nie13b])
Let F be a finite field, the [n, k, d] Generalised Reed–Solomon (GRS) code is the set

CGRS = {(β1f(α1), . . . , βnf(αn)) :
f ∈ F[x] with deg f < k,
βj ∈ F\{0}, αi ∈ F,∀i 6= j : αi 6= αj

}
.

For some decoding algorithms ai 6= 0 is necessary (cf. [Nie13b]). This definition is
the basis for the further operations.

3.1.1 Hamming Metric

Distance measure for Reed–Solomon codes is done using the Hamming metric, which
is defined via the Hamming weight.
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Definition 3.1.2 (Hamming Weight and Hamming Distance [Ham50])
Let a,b ∈ Gn be vectors of length n containing elements of some additive group
(G,+, 0), then the Hamming weight wt(a) and distance dist(a,b) are defined by:

wt(a) = |{i : ai 6= 0}|,
dist(a,b) = wt(a− b).

Informally, the Hamming weight is the number of entries of a vector that are not
equal to zero. The Hamming distance is the number of entries that differ between
two vectors.

3.1.2 Encoding of Reed–Solomon Codes

Encoding of Reed–Solomon codes is the method of associating a polynomial f to
some information v, where f will be used as in Definition 3.1.1. There are multiple
encoding schemes for Reed–Solomon codes, including systematic and non–systematic
schemes. [Bos13, Section 3.1.5] lists four methods using a generator- and test–
polynomial, including the following one.

Definition 3.1.3 (Associated Polynomial)
Let v ∈ Fkq be some information. Then the associated polynomial f of i is

f(x) =
k−1∑
i=0

vi+1x
i = v1 + v2x+ v3x

2 + . . .+ vkx
k−1.

The k positions of the information are used as coefficients of a polynomial with a
degree strictly smaller than k, the condition of Definition 3.1.1.

Example 3.1.1 (Reed–Solomon Encoding)
For a continuous example of a [5, 3, 3] GRS code over F7, set the parameters to

β1 = β2 = β3 = β4 = β5 = 1,

α1 = 3,

α2 = α2
1 = 2,

α3 = α3
1 = 6,

α4 = α4
1 = 4,

α5 = α5
1 = 5.
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Let v = (5, 2, 3) ∈ F3
7 = Fk be the information to encode. We associate the polyno-

mial

f(x) =
k−1∑
i=0

vi+1x
i

= v1 + v2x+ v3x
2 + . . .+ vkx

k−1

= 5 + 2x+ 3x2

with v and compute the code word c ∈ F5
7 = Fn as

c = (β1f(α1), β2f(α2), β3f(α3), β4f(α4), β5f(α5))

= (f(3), f(2), f(6), f(4), f(5))

= (3, 0, 6, 5, 6).

This example will be continued in the following step of decoding Reed–Solomon
codes.

3.1.3 Decoding of Reed–Solomon Codes

For the decoding process we consider some unknown codeword c ∈ CGRS(n, k), and
some unknown error e ∈ Fn, which is hoped to be mostly zero. The known received
word is constructed by r = c+ e. For generalised Reed–Solomon codes with βi 6= 0
we set r′ = ( r1

β1
, . . . , rn

βn
) and use r′ instead of r.

A widely used concept, the error locator polynomial, is elementary to many decod-
ing algorithms, including the one examined in this section. But not everyone uses
the same definition. The one that will be used in this thesis is the error locator
polynomial having roots in all error positions.

Definition 3.1.4 (Error Locator Polynomial [Nie13a])
The error locator polynomial is defined as

Λ(x) =
∏
i∈E

(x− αi).

As the codewords are confined by the code locators and the degree limit, equivalences
are usually modulo some polynomial. It is useful to have some simplification to prove
equivalence modulo some polynomial.
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Theorem 3.1.1
Two polynomials f, h ∈ F[x] are equivalent modulo some polynomial G ∈ F[x] if and
only if they evaluate the same for all roots of G:

(∀α : G(α) = 0) =⇒ f(α) = h(α).

Proof. It is equivalent to write

f ≡ h mod G (3.1)
⇔ G|f − h. (3.2)

Choose some α such that it is a root of G. As α is a root, some factor (x − α)
divides G. As (x− α)|G is true, for Equation (3.2) to be true, it must also be true
that (x− α)|f − h, which is equivalent to α being a root of f − h. But for α to be
a root of f − h it has to be that f(α) = h(α). Since α was an arbitrary root of G,
all roots of G have to be roots of f − h.

Combining the above, [Gao03] concluded a relationship of the error locator polyno-
mial, the interpolation of the received word and the information polynomial modulo
the polynomial with the code locators as roots.

Definition 3.1.5 (Gao Key Equation [Gao03])
Let λ be some solution for Λ, ψ a solution for Ω = (Λf), r(x) the interpolation
polynomial of the received word r with r(αi) = ri, and G(x) =

∏n
i=1(x − αi) the

minimal polynomial with roots in all code locators. Then the Gao key equation is

Λ(x)r(x) ≡ Ω mod G(x), (3.3)

with additional requirements for a solution λ, ψ:

deg λ+ (k − 1) ≥ degψ. (3.4)

The right hand side of Equation (3.3) is an abstraction of its structure with Ω = Λ·f
as a substitute. The original equation would be Λ(x)r(x) ≡ Λ(x)f(x) mod G(x).

Proof. Using Theorem 3.1.1 it is sufficient to show, that Λ(x)f(x) and Λ(x)r(x)
evaluate the same for all roots of G(x), which are the code locators.

For ei 6= 0 it is Λ(i) = 0, so both sides are zero. For ei = 0 it is r(i) = ci = f(i).
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To get a solution (λ, ψ) for Equation (3.3) let λ = a:

λr = ψ + d ·G
⇔ ψ = λ · r + c ·G (with c = −d)

⇒ (λ, ψ) = (a, a · r + c ·G)

= a(1, r) + c(0, G).

The result is a submodule solution space with row basis β = {(1, r), (0, G)} for
Equation (3.3), but not every solution within this submodule fulfils the degree re-
quirements of Equation (3.4).

To restrict the space of solutions, a solution should not only satisfy Equation (3.4)
but also be minimal with respect to deg λ + (k − 1). Therefore, the solution space
has to be shifted, which is equivalent to a multiplication with a diagonal matrix
having the shifts as diagonal elements:

D =

(
xk−1 0

0 1

)
.

The solution of interest is the shortest vector of the resulting submodule, that still
fulfils the side condition. This would not always be the correct solution, as Λ does
not have to be the minimal solution, in those cases decoding would fail. However,
this only occurs for |{i : ei 6= 0}| ≥ d/2 (cf. [Nie13b], as non interleaved decoding is
a special case of virtually interleaved decoding).

The solution can be computed using the algorithm of [Nie13a] without powering:
Let M be a basis for the solution and D a diagonal shift matrix of the form above.
Compute M′ such that M′D is in weak Popov form. Check the basis vectors of M ′

for a valid solution. If such a solution is found, return it, otherwise declare decoding
failure.

Example 3.1.3 can be considered for simple decoding, too, but is used in context of
virtually interleaved codes.

3.1.4 Interleaved Reed–Solomon Codes

Interleaved Reed–Solomon codes are used in several instances as compact discs or
other data storage, transmission or processing units (cf. [SSB09]). Gabidulin codes
can be interleaved as well and show many similarities to interleaved Reed–Solomon
codes.

The following definition is the basis for operations using interleaved Reed–Solomon
codes.

23



3 Coding Theory Fundamentals

Definition 3.1.6 (Interleaved Reed–Solomon Codes [SSB09])
Let C1, . . . , C` be, not necessarily distinct, Reed–Solomon codes of length n and di-
mensions k1, . . . , ks. The interleaved Reed–Solomon code IRS[`;n, k1, . . . , k`] is de-
fined by:

IRS[`;n, k1, . . . , ks] = {c =


c1
c2
...
c`

 : ci ∈ Ci, i ∈ 1 . . . `}.

The process of encoding is simply encoding of ` regular Reed–Solomon codes. it is
possible to decode every single codeword separately, but for collaborative decoding,
a new key equation is necessary.

Definition 3.1.7 (Key Equation [Nie13a])
Let λ be a solution for Λ, ψt a solution for (Λft) and G(x) =

∏n
i=1(x − αi) the

minimal polynomial with roots in all code locators. The key equation is

Λ(x)rt(x) ≡ Λ(x)ft(x) mod G(x), (3.5)

with additional requirements for a solution λ, ψ1, . . . , ψ`:

deg λ+ (ki − 1) ≥ degψi.

The process to get a solution is analogue to the process in Section 3.1.3. The matrix
is simple a union of the single solution matrices:

M =


1 r1 r2 . . . r`
0 G1 0 . . . 0
0 0 G2 . . . 0
...

...
...

. . . 0
0 0 0 0 G`

 .

But another shift matrix is needed, as more dependencies have to be considered.
This results in the following diagonal matrix, where γi =

∑`
j=0(kj − 1) − (ki − 1)

and γλ =
∑`

j=0(kj − 1) are the shifts for the degree requirements:

D = diag(xγλ , xγ1 , . . . , xγ`).

All that is left is to retrieve the original information.
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Retrieving the Information Polynomial

One advantage of Gao style decoding is the direct computation of the information
polynomial, instead of needing further steps like the Forney formula. For some valid
solution (λ, ψ1, ψ2, . . . , ψl), the information polynomial f is

fi =
λ

ψi
,

because the right hand side of the Gao key equation (cf. Equation (3.3)) had the
structure ψ = Λf .

Example 3.1.2 (Final Decoding Step)
Using the resulting polynomials of Example 3.1.3, the information polynomial f is
easily computable:

λ(x) = 5x+ 1 = (x+ 3) · 5
ψ1(x) = x3 + 6x2 + 6x+ 5 = (x+ 5)2 · (x+ 3)

f(x) =
ψ1(x)

λ(x)
= (x+ 5) · (3x+ 1) = 3x2 + 2x+ 5.

This is the information polynomial computed in Example 3.1.1 and has the original
information as coefficients.

3.1.5 Application of Interleaved Reed–Solomon Codes

Virtually interleaving of Reed–Solomon codes, called power decoding, is one method
to decode beyond half the minimum distance. This technique was introduced by
[SSB06]. One possibility to virtually interleave a given code is to create new received
words by powering the original received word r:

rnt = (ct + et)
n

=
n∑
i=0

(
n

k

)
cn−it eit

= cnt +
n∑
i=1

(
n

k

)
cn−it eit︸ ︷︷ ︸

= ˜et,n

.

The error occurring for those words is ẽt,n. An important observation is et = 0 =⇒
ẽt,n = 0 ⇐⇒ rnt = cnt . Whenever the error is zero for the original word, it is zero
for the powered word, too. Another consequence of this is one resulting Λ for all
powered words.
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Definition 3.1.8 (Degree Requirements [Nie13a])
Virtually interleaved Reed–Solomon codes allow for simpler degree requirements, as
it holds, that ∀i, j ki = kj.

deg λ+ t(k − 1) ≥ degψt (3.6)
t(k − 1) < n. (3.7)

This results in the shift matrix:

D = diag(xl(k−1)+1, x(l−1)(k−1), x(l−2)(k−1), . . . , xk−1, 1).

The application of this algorithm is shown in Example 3.1.3.

Example 3.1.3 (Module Minimisation to Solve for Λ)
Let r = (3, 0, 6, 1, 6) be the received word from Example 3.1.1. At first we compute
G(x), R1 and R2:

G(x) =
n∏
i=1

(x− αi)

= (x− 3)(x− 2)(x− 6)(x− 4)(x− 5)

= x5 + x4 + x3 + x2 + x+ 1

R1(x) = 6x4 + 2x3 + 3x2 + x

R2(x) = 3x4 + 3x3 + 6x2 + 2.

This results in a basis M and a shift matrix D.

M =

1 R1 R2

0 G 0
0 0 G

 ,D =

x5 0 0
0 x2 0
0 0 1


We now compute M′, a basis of M, such that M′D is in weak Popov form. A
possible result is:

M′ =

5x+ 1 x3 + 6x2 + 6x+ 5 x5 + 4x4 + 5x3 + 6x2 + 3x+ 2
x 3x4 + 4x3 + 2x2 + x+ 1 3x5 + 3x4 + 6x3 + 2x
0 0 x5 + x4 + x3 + x2 + x+ 1

 .

Only the first row of M’ fulfils the requirement of Equation (3.6) of the power Gao
key equations, so we assume that row is a solution for Λ in the power Gao equations
of Equation (3.3). This results in the following solutions to Λ and Ω.

λ(x) = 5x+ 1

ψ1(x) = x3 + 6x2 + 6x+ 5

ψ2(x) = x5 + 4x4 + 5x3 + 6x2 + 3x+ 2
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Finding the roots of λ can be done by exhaustive search, resulting in:

λ(x) = 0⇐⇒ x = 4 = α4.

Hence the error is on position four: (3, 0, 6, 1 , 6). In comparison to Example 3.1.1:
(3, 0, 6, 5, 6).

3.2 Gabidulin Codes

This section introduces Gabidulin codes, the rank metric equivalent of Reed–Solomon
codes of Section 3.1. This equivalence enables conversion of concepts from Reed–
Solomon codes to Gabidulin codes, an important source of research on Gabidulin
codes. The algorithm of this thesis was first used for Reed–Solomon codes as well.

3.2.1 Rank Metric

The basis for distance measuring of Gabidulin codes is different from Reed–Solomon
codes Hamming metric. For calculating the distance, we use the rank of the matrix,
which was transformed throguh the ext mapping from Section 2.1.2.

Definition 3.2.1 (Rank Metric [Gab85])
Let a, b ∈ Fqm be two elements of some extension field Fqm. The rank weight and
distance are defined by the equations

wtrk(a) = rank (ext (a)) = rank (A) ,

distrk (a,b) = wtrk(a− b) = rank (ext (a)− ext (b)) = rank (A−B) .

3.2.2 Encoding of Gabidulin Codes

The definition of Gabidulin codes is similar to the definition of Reed–Solomon codes.

Definition 3.2.2 (Gabidulin Codes [WZ13])
Let g1, . . . , gn ∈ Fqm be linear independent over Fq and f ∈ Lq[x] with degq f < k.
Then the Gabidulin code is the set

CGab = {(f(g1), f(g2), . . . , f(gn))}.
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The elements g1, . . . , gn will be called code locators of CGab. The function f is
a q-polynomial associated with the information to encode, similar to encoding of
Reed–Solomon codes in Section 3.1.2.

While encoding some information as coefficients of f is still possible, [KK08] suggests
using subspaces as information. As linearised polynomials have subspaces as root
spaces, the association can be defined by this.

3.2.3 Decoding of Gabidulin Codes

There are multiple approaches to decoding for Gabidulin codes. For this thesis,
the relevant approach uses a key equation similar to the Gao key equation of Reed–
Solomon codes from Definition 3.1.5. For such an equation multiple concepts need to
be redefined or introduced for Gabidulin codes and non commutative polynomials.

Preparations

Lemma 3.2.1
Let A ∈ Fm×nq be a matrix of rank t = rank (A). There exist full rank matrices
B ∈ Fm×tq , C ∈ Ft×nq with row space R and column space C that fulfil:

R(A) = R(B),

C(A) = C(C).

Lemma 3.2.1 goes back to and has been proven by [MS74, Theorem 1]. The de-
composition of two matrices will be used to model the error of Gabidulin code
transmissions. Consider some received word r = c+e and its matrix representation
ext(r) = R = C + E with rank (E) = t.

Lemma 3.2.1 allows for a full rank decomposition of the error matrix ext e = E =
A ·B, where A ∈ Fm×tq and B ∈ Ft×nq and rank (A) = rank (B) = t.

Let a = ext−1A be the ext inverse of the left part of the error decomposition. This
allows for the following decomposition:

e = ext −1(E)
Eq. 2.2

= ext −1(A) ·B = a ·B. (3.8)

Based on this definition the error span polynomial will be used for decoding, similar
to the error locator polynomial of Definition 3.1.4 of Reed–Solomon codes.
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3.2 Gabidulin Codes

Definition 3.2.3 (Error Span Polynomial [WZ13])
Let a = (a1, a2, . . . , at) be the left part of the error decomposition of Equation (3.8).
The error span polynomial is defined as

Λ(x) = M〈a〉 = M〈a1,a2,...,at〉 =
∏
α∈〈a〉

(x− α).

At last some interpolation of the received word is necessary, as a regular interpolation
would result in a regular polynomial.

Definition 3.2.4 (Interpolation [WZ13])
Let gi ∈ G be the code locators of some Gabidulin code. Let now Li(x) = MG\gi ∈
Lq[x] be a linearised helper polynomial. The interpolation r̂ of some word r ∈ Fnqm
with r = (r1, r2, . . . , rn) is then

r̂ =
n∑
i=1

ri
Li(x)

Li(gi)
.

One useful observation is r̂(gi) = ri, as

Li(gj)

Li(gi)
=

{
1 if i = j,
0 else.

This is true, as gj is a root of Li, but gi is not, therefore it is either Li(gi) divided
by itself, or zero divided by something non–zero.

The following theorem is equivalent to [WZ13, Theorem 3.6] but this proof is slightly
different. It combines the concepts into an equation similar to the Gao key equation
of Definition 3.1.5.

Theorem 3.2.1
Let r̂ be the interpolation of r using Definition 3.2.4. Let f be the unknown in-
formation polynomial used to compute the codeword c, MG the minimal subspace
polynomial over the code locators and Λ the error span polynomial. Then the Gao–
like key equation for Gabidulin codes is

Λ(r̂(x)− f(x)) ≡ 0 mod MG. (3.9)

Proof. Let Gi ∈ Fq be arbitrary constants for 1 ≤ i ≤ n and gi are the code
locators of some Gabidulin code. Let r be the received word, then r̂ is the unique
q-polynomial fulfilling r̂(gi) = ri and degq(r̂) < n. f shall be the information q-
polynomial used to compute the codeword c that led to receiving r. Now evaluate
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Equation (3.9) with x =
∑n

i=1Gigi:

Λ(r̂(
n∑
i=1

Gigi)− f(
n∑
i=1

Gigi))
Fq linear

= Λ(
n∑
i=1

Gir̂(gi)−
n∑
i=1

Gif(gi))

=
n∑
i=1

GiΛ(r̂(gi)− f(gi))

=
n∑
i=1

GiΛ(ri − ci)

=
n∑
i=1

Gi Λ(ei)︸ ︷︷ ︸
=0

= 0.

As all Gi have been arbitrary Equation (3.9) evaluates to zero on both sides for all Fq
linear combinations of the code locators gi. Those linear combinations are the roots
of the minimal subspace polynomial MG = M〈gi〉. Therefore both sides evaluate the
same for all roots of the minimal subspace polynomial MG. The requirements of
Theorem 2.2.1 are therefore fulfilled. The theorem follows.

Theorem 3.2.2
Let r̂ be the interpolation of r using Definition 3.2.4. Let f be the unknown infor-
mation polynomial used to compute the codeword c and MG the minimal subspace
polynomial over the code locators. Then a valid transformation of Theorem 3.2.1 is

Λ(r̂(x)) ≡ Λ(f(x)) mod MG. (3.10)

Let λ be some solution for Λ and ψ a solution for Ω = (Λ(f)). The degree restriction
for solutions is then formulated by

degq λ+ (k − 1) ≥ degq ψ. (3.11)

Proof. Again, it is sufficient to show that both sides evaluate the same for every gi.
For i with ei = 0 it is Λ(f(gi)) = Λ(ci) = Λ(ri) = Λ(r̂(gi)). For i with ei 6= 0 it
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holds, that:

Λ(r̂(gi)) = Λ(ri)

= Λ(ci + ei)

= Λ(ci +
t∑

j=1

Bj,iaj)

Eq 2.2
= Λ(ci) +

t∑
j=1

Bj,iΛ(aj)︸ ︷︷ ︸
=0

= Λ(ci)

= Λ(f(gi)).

The transformed equation can be solved using module minimisation.

Module Minimisation

[LNPS15, Lemma 1] gives the solution space for interleaved codes, where the shifts
for the degrees are described by the function

Φ : Lq[x]` −→ Lq[x]` : (u1, . . . , u`) −→ (u1x
[γ1], . . . , u`x

[γ`]),

where γ1, . . . , γ` are the weights. The solution space can be reduced to the non–
interleaved version using the matrices

B =

(
1 r̂
0 MG

)
,Φ(B) =

(
x[k−1] r̂

0 MG

)
.

Theorem 3.2.3
A solution for decoding is a row u = (λ, ψ) of a matrix B′ with Φ(u) having its
leading position at the first element, Φ(B′) in weak Popov form and B′ and

B =

(
1 r̂
0 MG

)
being bases for the same module.

Proof. Leading position one implies fulfilment of the degree requirement described

by Equation (3.11), because degq Φ(B′)i,1 = degqB
′
i,1 + v1

LP=1

≥ degqB
′
i,j + vj, for

the weights v, within a row i.
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To get a solution (λ, ψ) for Equation (3.10), it should hold:

λr = ψ + d ·MG
⇔ ψ = λ · r + c ·MG (with c = −d)

⇒ (λ, ψ) = (a, a · r + c ·MG) (with λ = a)

= a(1, r) + c(0, MG).

The result is a submodule solution space with row basis B. The theorem follows.

Having a solution λ for Λ and ψ for Ω = Λ(f), only the retrieval step is left.

Retrieving the Information Polynomial

For Gao–like decoding of Gabidulin codes, as with Reed–Solomon codes, the final
step of decoding is division. As q-polynomials are non–commutative, it is important
to use left–division. If λ and ψ are valid solutions, it holds, that:

λ−1 · ψ = λ−1 · Λ(f) = λ−1 · Λ · f = f.

If the division fails, decoding failure is declared.

3.2.4 Interleaved Gabidulin Codes

As Reed–Solomon codes of Section 3.1.4, Gabidulin codes can be interleaved. Gabidulin
codes can be interleaved horizontally or vertically. This section is an introduction to
horizontally interleaved Gabidulin codes. This definition is the horizontally equiva-
lent of [WZ13, Definition 2.17].

Definition 3.2.5 (Horizontally Interleaved Gabidulin Codes)
Let yi = (g1, g2, . . . , gn) with g1, g2, . . . , gn linear independent over Fqm, for every
i with 1 ≤ i ≤ n. Let C1, C2, . . . , C` over Fqm be some `, not necessarily distinct,
Gabidulin codes. Let Ci have the code locators yi. The horizontally interleaved
Gabidulin code IGab[`;n, k1, k2, . . . , k`] is defined by:

IGab = {(c1, c2, . . . , c`) = (f1(y1), f2(y2), . . . , f`(y`))}.

Where degq fi < ki ≤ n for all i, and k1, . . . , k` denounce the dimensions of the `
codes.

For ` = 1, this results in a regular Gabidulin code.
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3.2 Gabidulin Codes

Decoding of Interleaved Gabidulin Codes

Each codeword can of course be decoded on their own. But interleaving allows
decoding in a slightly different way.

Definition 3.2.6 (Error Model of Interleaved Gabidulin Codes)
Let c = (c1, c2, . . . , c`) be a codeword of some interleaved Gabidulin code CIGab and
let C = ext c. The received word r is defined by

r = extR = C + E = ext c + ext e,

with some error matrix E. Let then be

t = rank (E) ,

be an indicator of the error size.

For horizontally interleaved Gabidulin codes, the matrix representation R of the
received word has dimensions m×`n. This is important for the rank decomposition.

Theorem 3.2.4
There exists a vector a ∈ Lq[x]t and a corresponding matrix B ∈ Lq[x]t×`n fulfilling

e = aB.

Proof. This is a straight forward implication of Lemma 3.2.1.

This implies an error span polynomial M〈a〉 as in Definition 3.2.3 using the same
characteristics. This error span polynomial is valid for all codewords.

Theorem 3.2.5
For every codeword of some interleaved Gabidulin code Theorem 3.2.2 creates a valid
key equation using the same error span polynomial:

Λ(r̂i) ≡ Λ(fi) modMGi .

Proof. Theorem 3.2.4 implies a decomposition of every partial error ei, the error of
the i-th codeword part ci, of the form

ei = aBi.

Every codeword can be treated separately as a regular Gabidulin code codeword.
This would create a key equation according to Theorem 3.2.2. As the error span
polynomial only depends on a and every a is the same, all error span polynomials
are identical.

33



3 Coding Theory Fundamentals

Theorem 3.2.5 creates a system of equations described by [LNPS15, Problem 1].
The solution space is described in [LNPS15, Lemma 1], which is the basis of the
following theorem.

Theorem 3.2.6
The matrix B is a basis for the multiple key equations of Theorem 3.2.5 without the
degree requirements:

B =


1 r1 r2 . . . r`
0 MG1 0 . . . 0
0 0 MG2 . . . 0
...

...
...

. . . 0
0 0 0 0 MG`

 .

Proof. A vector (λ, ψ1, ψ2, . . . , ψ`) ∈ B is of the form:

(a, ar1 + c1MG1 , ar2 + c2MG2 , . . . , ar` + c`MG`).

This is an element–wise reformulation of the single key equations (cf. proof of
Theorem 3.2.3).

It is left to determine the degree requirements and model them in a useful way.

Theorem 3.2.7
The degree requirements of an interleaved Gabidulin code IGab[`;n, k1, . . . , k`] have
the general form:

degq λ+
∑̀
i=1

(ki − 1) ≥ degq ψj +
∑̀
i=1

(ki − 1)− (kj − 1).

Proof. The degree requirements of all codes C1, . . . , C` can be listed in the following
way:

degq λ+ (k1 − 1) ≥ degq ψ1

degq λ+ (k2 − 1) ≥ degq ψ2

...
...

degq λ+ (k` − 1) ≥ degq ψ`.

Adding to the i-th equation the sum of the deviations of all other equations
i−1∑
j=1

(kj − 1) +
∑̀
j=i+1

(kj − 1) =
∑̀
j=1

(kj − 1)− (ki − 1),

results in the equation of the theorem.
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These degree requirements can be modelled either using a shift function Φ or a
diagonal matrix D of the following form:

Φ = (uλ, u1, . . . , u`) −→ (uλx
[γλ], u1x

[γ1], . . . , usx
[γ`]),

D = diag(x[γλ], x[γ1], . . . , x[γ`]).

Where γi =
∑`

j=0(kj − 1) − (ki − 1) and γλ =
∑`

j=0(kj − 1) are the shifts for the
degree requirements.

Theorem 3.2.8
A vector v ∈ Lq[x]s+1 is a solution for the key equations of Theorem 3.2.6 and degree
requirements of Theorem 3.2.7, if v is in the submodule spanned by B and

LP (Φ(v)) = 1.

Proof. LP (Φ(v)) = 1 implies degq Φ(v)1 > degq Φ(v)i with i > 1, as otherwise the
leading position would be the largest i not fulfilling the equation. As degq Φ(v) =
degq v + degq Φ((ui = 1))1 modelled the degree requirements, the requirements are
fulfilled.

As B is the solution space of the key equation, the theorem follows.

The desired vector should be minimal in respect to its degree. To find a minimal
vector module minimisation can be applied on the basis Φ(B) = BD to find a second
basis B′ containing the shortest vector.

If the solution is valid, the information polynomials can be retrieved by element–wise
left–division by λ:

(λ, ψ1, ψ2, . . . , ψ`) −→ (λ−1ψ1︸ ︷︷ ︸
=f1

, λ−1ψ2︸ ︷︷ ︸
=f2

, . . . , λ−1ψ`︸ ︷︷ ︸
=f`

)

If division fails, decoding failure is declared.

Minimization of the modules, to reach the final step, is the goal of the algorithms
in Chapter 4 and Chapter 5.

An important remark on the presented strategy using horizontally interleaved Gabidulin
codes is the unknown decoding radius. A shared decomposition might reduce de-
coding capabilities in terms of number of correctable errors.
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3.2.5 Application of Interleaved Gabidulin Codes

One possible application of interleaved Gabidulin codes is random linear network
coding (see [HMK+06]). This section will give a brief introduction for this topic.

Given an unknown network, a source and a sink, the goal of network coding is to
transmit information from the source to the sink.

A
B

C=rA+sB

Figure 3.1: Example graph for random linear network coding. The dotted line
represent an unknown network, r and s are random factors.

The source will send out rows of a codeword in matrix form, while the sink will
collect incoming rows from nodes. A node will construct a new codeword by creating
random linear combinations of incoming codewords using the formula:

cnew =
s∑
i=1

rici,

where ri is a randomly chosen factor and ci is the vector received on the i-th input
line.

A widely used approach (cf. [KK08]) is constructing the original codeword with an
identity matrix to record the particular linear combinations used:

C̃ = (I C).

In this context, interleaved Gabidulin codes might be able to reduce the overhead
per transmission, by adding additional codewords:

C̃ = (I C1 C2 . . . C`).
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3.3 Summary

A detailed examination of possible benefits and problems cause by this construction
is yet to be done.

3.3 Summary

This chapter reviewed information on Gabidulin codes in context of their hamming
metric equivalent, Reed–Solomon codes. For interleaved and non-interleaved codes,
the general decoding procedure can be described in few essential steps:

1. Interpolation of the received word(s).

2. Solving the key equation.

3. Computation of the information polynomial.

This is essentially an informal description of [WZ13, Algorithm 3.6].

While steps 1 and 3 need specific attention, those steps have been described in
[WZ13] and this chapter. [WZ13] approaches step 2 in its own way, but it can also
be solved using module minimisation.

This allows construction of a more general framework spanning farther than Reed–
Solomon and Gabidulin codes and embeds the decoding process for those codes in
this framework. The algorithms of the following two chapters solve the problem of
module minimisation over non–commutative polynomials, therefore solving the key
equation for Gabidulin codes.
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To apply the methods described in Section 3.1.3 and Section 3.2.3 algorithms to
compute the weak Popov form of Section 2.4.2 are needed. In this section those
algorithms will be explored for Ore extensions. Section 4.1 will look at common
factors and dependencies of the algorithms, like the complexity of multiplication.
Section 4.2 introduces the Ore extension variant of Mulders–Storjohann algorithm.
Finally, Section 4.3 presents the demand–driven variant of Mulders–Storjohann for
decoding.

4.1 Preliminaries

The algorithms discussed partly use the same mechanics, the simple transformation,
and they depend on the complexity of operations in the polynomial ring. These
commonalities are examined first.

4.1.1 Complexity of Multiplication

A core operation of the algorithms in this chapter is multiplication of ring ele-
ments. While the number of additions is usually higher, the actual complexity of
performing one multiplication usually outweighs the complexity of performing mul-
tiple additions. See [WZ13, Table 3.1] for q-polynomials.

In this case, polynomials are either regular polynomials f ∈ F[x], or polynomials
from Ore extensions g ∈ F[x; θ; δ]. Complexity of multiplication is different for those
and dependent on the base field F. Throughout this chapter, the complexity of mul-
tiplication, the asymptotic number of base field multiplications of two polynomials
of degree maximal n shall be denoted by M(n).

Following [CK91] regular polynomials of maximal degree n can be multiplied with
complexityM(n) = O(n log n log log n). If the base field supports fast Fourier trans-
formation they can even be multiplied with complexity M(n) = O(n log n).

39



4 Known Algorithms

[WZ13] gives multiplication algorithms and their complexity for q-polynomials. For
two q-polynomials of degree m and n, [WZ13, Section 3.1.1] shows that the com-
plexity of multiplication is M(n,m) = O((max{m,n})1.69). For two q-polynomials
modulo x[n] − x, [WZ13, Section 3.1.3] gives an algorithm for multiplication with
complexity M(n) = O(n1.69).

Complexity of Matrix Multiplication

Matrix multiplication is a central operation in Algorithm 4, its complexity is im-
portant. It is usually denoted by O(`ω) multiplications. A naive implementation
uses ω = 3, while there are known algorithms for ω ≈ 2.374 (cf. [CW90]), a usual
implementation uses the Strassen algorithm of [Str69] with ω ≈ 2.8.

4.1.2 Simple Transformation

To achieve weak Popov form (cf. Definition 2.4.4) of a polynomial matrix, the leading
positions of entries have to change. The main step to reach this goal is called simple
transformation. The following Theorem 4.1.1, describing simple transformations for
skew polynomials, is from [LNPS15, Definition 2], supplemented by a proof of its
correctness.

Theorem 4.1.1
To eliminate the leading term of a row v using another row u with v,u ∈ Fn[x; θ; δ]\{0}
and LP (v) = LP (u) a simple transformation of the form

v = v − αxβu
β = deg v − degu

α = LC(LP (v))/θβ(LC(LP (u)))

can be applied. Where LC(f) is the leading coefficient and LP (v) is the leading
position.

Proof. Let ul,vl be the leading coefficient of the leading position of u,v. Then for
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the leading term it holds, that:

vlx
degv − αxβulxdegu

Ore�
= vlx

degv − α(θ(ul)x
β−1ulx+ δ(ul))x

degu

. . .

= vlx
degv − αθβ(ul)x

β+degu +O(xβ+degu−1)

= vlx
degv − αθβ(ul)x

degv−degu+degu +O(xβ+degu−1)

= vlx
degv − αθβ(ul)x

degv +O(xdegv−1)

= (vl − αθβ(ul))x
degv +O(xdegv−1).

Where O(xβ+degu−1) is the term introduced by the derivative δ with degree strictly
smaller than deg v. For the leading term to be eliminated, only the coefficient of
xdeg v has to be zero. This is equivalent to:

0 = (vl − αθβ(ul))x
degu

⇒ 0 = vl − αθβ(ul)

⇔ α = vl/θ
β(ul)).

In conclusion, the leading term is eliminated.

The behaviour of simple transformations can further be specified by the following
lemma.

Lemma 4.1.1
A simple transformation will either:

1. Lower the degree of the row, or

2. Lower the leading position of the row.

Proof. Let u,v ∈ F[x; θ; δ]` be two rows used in a simple transformation with
degu ≥ degu, so that u = u− αxβv is a valid simple transformation. The leading
positions of the two rows are identical and shall be denoted by j = LP (u) = LP (v).

A simple transformation can not introduce a new term of degree degu at the right
of the current leading position, because β + deg vj+η < degUj for all η ∈ N. If this
was not the case, the leading position of v had to be LP (v) = j + η. A term of the
same degree can therefore only exist on lower positions.

As a simple transformation eliminates the leading term of the leading position there
can either be another term of the same degree to the left, or there is none. If there
is no term of the same degree as the former leading position, the degree of the row
drops by at least one. If there is a term of the same degree, the leading position will
shift to this term.

41



4 Known Algorithms

A lowering of the leading position is informally a move to the left for the leading
position. This is an important observation for correctness and complexity proofs of
the algorithms.

Complexity of Simple Transformations

A simple transformation is worst case O(lM(n)) as l elements get multiplied and
subtracted. But for special cases it can be much better. For this estimation the
length of a polynomial is useful.

Definition 4.1.1 (Length of a Polynomial)
Let f ∈ F[x; θ; δ] be some polynomial with the set of coefficients {f0, f1, f2, . . . , fdeg f}.
The length L(f) of the polynomial is given by

L(f) = |{i : fi 6= 0}|.

Informally L(f) is the number of terms of a polynomial f with coefficient not zero.

Lemma 4.1.2
Let f, g ∈ F[x; θ; 0] be a polynomials of some Ore extension with derivative zero and
deg f ≥ deg g. Let further

α =
fdeg f

θβ(gdeg g)
, β = deg f − deg g

be constants depending on f and g, where fi is the coefficient of the monomial of
degree i. The composition f − αxβg can then be computed in O(L(g)).

Proof. The multiplication αxβg is carried out for every term of g and results in one
computation of θβ(gi) and one multiplication with α for every coefficient. Coeffi-
cients that equal zero can be ignored.

Addition, and therefore subtraction, is carried out element–wise, only non–zero co-
efficients need to be considered. As g has exactly L(g) non–zero coefficients, the
theorem follows.

Restrictions for Decoding

The matrix for decoding Gao–like has a unique form, so complexity can be estimated
more accurately for this special case. One restriction is the Ore extension itself.
Complexity analysis will be done for F[x; θ; δ] with θ(a) = aq and δ = 0.
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Definition 4.1.2 (Form of Decoding Matrix)
Let B ∈ F[x; θ; δ]`×` with θ(a) = aq and δ = 0 be a basis in matrix representation
and v = (v1, . . . ,v`) ∈ N`

0 a vector of weights. The matrix of interest has the form:

B =


1xv1 s1x

v2 s2x
v3 . . . s`−1x

v`

0 G1x
v2 0 . . . 0

0 0 G2x
v3 . . . 0

...
...

...
. . . 0

0 0 0 0 G`−1x
v`

 .

It is assumed that deg si ≤ degGi as calculating using si mod Gi holds the same
results.

This matrix has multiple useful properties that simplify computation over those.
Besides the first row, the leading positions are on the diagonal. One important
conclusion from this is, that there is only one conflict and that the matrix is in
weak Popov form, as soon as one rows leading position moves to the first column.
Lemma 4.1.3 adds another property that will be used, as the given matrix fulfils the
condition of only having one leading position conflict.

Lemma 4.1.3
Let B ∈ F[x; θ; δ]m×` be some matrix with only two rows having the same leading
position, excluding zero rows. Applying simple transformations will not increase the
number of leading position conflicts.

Proof. As there is only one conflict, both rows will be used during a simple trans-
formation. If the conflict is not resolved, both leading positions will remain. If the
conflict is resolved, only one leading position will change. As every other leading
position is distinct, the new value can conflict with at most one.

These properties will be used for complexity analysis, as they allow more precise
estimations on the number of simple transformations done within the algorithms.

Finally, a useful lemma for a matrix of the given form is the following:

Lemma 4.1.4
For a matrix B ∈ F[x; aq; 0]`×` and a vector v ∈ N`

0 as described in Definition 4.1.2
it holds, that:

∆B ≤ degB1 − v1.

Proof. As B is in upper triangular form, the degree of its determinant is the sum of
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the degrees of the diagonal elements:

deg detB =
∑̀
i=1

degBi,i

=
`−1∑
i=1

deg(Gi + vi+1) + deg v1.

The first element of the matrix can be ignored, as it has degree zero besides its
weight. The orthogonality defect can therefore be rewritten to

∆B = degB− deg detB

= degB− (
`−1∑
i=1

(degGi + vi+1) + v1)

=
∑̀
i=1

degBi −
`−1∑
i=1

(degGi + vi+1)− v1

= degB1 +
∑̀
i=2

(degGi−1 + vi)−
`−1∑
i=1

(degGi + vi+1)− v1

= degB1 − v1.

This is the claim of the lemma.

To comply with the notation used in [LNPS15] the following theorem introduces the
variable µ and an important relationship to the orthogonality defect.

Theorem 4.1.2
Let µ = maxi{degBi,i − vi} for the matrix of Definition 4.1.2 with the weights v.
It then holds, that:

∆B ≤ µ− v1.

Proof. It holds, that maxi degBi,i ≥ degB1 as deg si ≤ degGi was assumed. To-
gether with Lemma 4.1.4 the theorem follows.

4.2 Mulders–Storjohann Algorithm

The Mulders–Storjohann algorithm was introduced by [MS03] for regular polynomi-
als f ∈ F[x] over some field F. [LNPS15] modified the algorithm for skew polyno-
mials g ∈ F[x; θ; δ] of some Ore extension.
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4.2.1 Algorithm

Algorithm 1 has a simple structure: As long as the matrix is not in weak Popov
form, it applies a simple transformation (Line 4 to Line 7), using two rows with the
same leading position (Line 3). LC refers to the leading coefficient and LP to the
leading position introduced in Definition 2.4.3.

Algorithm 1: MS(B), Mulders–Storjohann Algorithm.
Input: Basis B ∈ F[x]m×`

Output: Matrix R(B) ∈ F[x]m×` so that R(B) is in weak Popov form.
1 let U = B
2 while U is not in weak Popov form do
3 find i1, i2 so that LP (Ui1) = LP (Ui2) and degUi1 ≥ degUi2

4 let j = LP (Ui1)
5 let β = degUi1 − degUi2

6 let α = LC(Ui1,j)/θ
β(LC(Ui2,j))

7 let Ui1 = Ui1 − αxβUi2

8 return U

The termination and correctness of Algorithm 1 is analogue to [LNPS15, Theorem 1].

Theorem 4.2.1
Algorithm 1 terminates.

Proof. As long as the matrix is not in weak Popov form, there are two or more
rows with the same leading position, so it is possible to find two conflicting rows in
Line 3. The condition degUi1 ≥ degUi2 is no loss of generality, as i1 and i2 can be
switched.

Consider the following weighting functions for some vector v ∈ F[x]` and some
matrix M ∈ F[x]m×`:

ϕ(v) = ` deg v + LP (v) with ϕ(0) = 0,

ϕM(M) =
m∑
i=1

ϕ(Mi).

The function ϕ, and therefore the sum ϕM , is lower bounded by zero. At the
beginning of Algorithm 1, ϕM(M) starts with a finite value. Lemma 4.1.1 states,
that a simple transformation either lowers the leading position of v, if there is
another position with equal degree, or it lowers the degree of v. If the degree is
reduced, the leading position might increase. In the worst case it might increase by
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` − 1, from position one to the maximum position. So ϕ decreases by at least one
for every simple transformation including v, as a decrease in degree would decrease
the value of ϕ by `.

As for every row v the starting value is finite, the sum of those values ϕM is finite as
well. Every simple transformation changes some row Mi of M, as ϕ(Mi) decreases
by at least one, so does ϕM . Since ϕM is finite at the start, is lower bounded by zero,
and reduced by at least one in every step, there can only be finitely many steps.

Using Theorem 4.2.1 the correctness of Algorithm 1 is proven easily.

Theorem 4.2.2
Algorithm 1 is correct.

Proof. Algorithm 1 is correct, as it only terminates if and only if the matrix is in weak
Popov form, otherwise the loop would continue. In combination with Theorem 4.2.1,
the algorithm is correct.

4.2.2 Complexity

[LNPS15] shows the following theorem on the complexity of Algorithm 1.

Theorem 4.2.3
Algorithm 1 can compute the weak Popov form for decoding of Gabidulin codes in
O(`2µ2) with µ = maxi{degBi,i − vi}.

Proof. One simple transformation costs O(`) multiplications by the scaling factor
αxβ and subtractions in the base ring as well as one computation of θβ. Finding
some conflicting pair of rows and their leading position can be done in O(`) with a
one time preparation of O(`2).

The algorithm does at most O(`(∆M+ 1)) many simple transformations, as for the
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starting matrix M and the resulting matrix V it holds, that:

ϕM(M)− ϕM(V) =
∑̀
i=1

ϕ(mi)− ϕ(vi)

=
∑̀
i=1

` degmi + LP (mi)− (` deg vi + LP (vi))

= `(
∑̀
i=1

degmi − deg vi) +
∑̀
i=1

LP (mi)− LP (vi)︸ ︷︷ ︸
(1)

= `(
∑̀
i=1

degmi − deg vi) + LP (m0)− 1︸ ︷︷ ︸
<`

< `(degM− degV + 1)

(2)
= `(∆(M) + 1).

The term at (1) is equal to LP (m0)− 1, because the form of the input matrix has
only diagonal elements outside of row one, so their leading position must be on the
diagonal. As V is in weak Popov form, all leading positions are different. So every
leading position of two to ` cancels out and only the leading positions of row one in
M and of value one in V are left.

Step (2) is valid, as degV = deg detV = deg detM, because simple transformations
do not change the degree of the determinant.

Theorem 4.1.2 showed that the orthogonality defect can be approximated by µ. The
complexities of a simple transformation and the count of simple transformations can
now be multiplied together. This results in O(`2µ2).

This complexity can be improved by a variant specialised for decoding: The demand–
driven algorithm.

4.3 Demand–Driven Algorithm

[Nie13a] presented a variant of the Mulders–Storjohann algorithm over regular poly-
nomials F[x], called the demand–driven algorithm. This algorithm is converted to
Ore extensions F[x; θ; δ] in [LNPS15, Section 5]. While in the general case it has a
complexity of O(`µ3), [LNPS15, Theorem 3] improves the complexity for decoding
of Gabidulin codes to O(`µ2) when used with MGi = x[m] − x.
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4.3.1 Algorithm

The algorithm as in [LNPS15, Section 5] is given by Algorithm 2 with slight mod-
ifications for names and the return value, as the single solution λ1 is sufficient to
return.

Algorithm 2: DD(̃s, G̃,v), Demand–Driven Algorithm.
Input: s̃i = six

vi+1 and G̃i = Gix
vi for i = 1, . . . , `− 1

Output: λ solution candidate for Λ
1 let (d,p) = (deg, LP ) of (xv1 , s̃1, . . . , s̃`−1)
2 if p = 1 then
3 return 1

4 let (λ1, . . . , λ`) = (xv1 , 0, . . . , 0)

5 let αixdi = leading monomial of G̃i for i = 1, . . . , `− 1
6 while degq λ1 ≤ d do
7 let α = coefficient of xd in (λ1s̃p mod G̃p)
8 if α 6= 0 then
9 if d < dp then

10 swap((λ1, α, d),(λp, αp, dp))

11 let β = d− dp
12 let λ1 = λ1 − α

θβ(αp)
xβλp

13 let (d, p) = (d, p− 1)
14 if p = 1 then
15 let (d, p) = (d− 1, `)

16 return λ1x
−v1

As Algorithm 2 only returns a solution candidate λ for Λ it is important to clarify
how to calculate the information polynomials.

Theorem 4.3.1
It holds, that:

fi = λ−1(λri mod MGi).

Proof. The key equation Equation (3.10) states, that Λ(r̂(x)) ≡ Λ(f(x)) mod MG.
If λ is a solution for Λ the theorem follows.

This relation is also important throughout the algorithm.
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Functionality

The algorithm uses the special purpose it is designed to solve to ignore data points
that are not needed to be calculated. The first column of the matrix that is to
be transformed into weak Popov form, will contain the solution λ, so only the first
column will be stored. Additional values are computed on demand (Line 7) as
elements within the vector have the given form (cf. Theorem 3.2.6).

One of the main ideas is to restrict calculation to the first row of the matrix. In the
beginning, all other rows have leading positions on the diagonal, so only the first
row has to be processed. Whenever a simple transformation is computed (Line 12),
line one should be involved. For this to happen, the target row is switched so it is
row one (Line 10). This will keep the leading positions on all rows but the first on
the diagonal.

The algorithm finds the new leading position by stepping through all possible valued
of the ϕ function of Theorem 4.2.1, by either reducing the degree by one and setting
the possible leading position to the end of the row (d − 1, `), when the leading
position would have reached column one, or reducing the possible leading position
(d, p − 1). If the leading position actually reached column one, the degree of the
solution would need to be bigger than the last degree and is caught by the while
condition.

Theorem 4.3.2
Algorithm 2 is correct, as it computes the minimal solution λ to the decoding problem
of Section 4.1.2.

Proof. Equivalent to Theorem 4.3.1, the computation λ1s̃p mod G̃p results in a
valid solution of the key equation without the degree requirement.

The algorithm stops, the first time the solution λ1 has the highest degree in its row.
This implies leading position one and the termination criterion. As this would result
in a matrix in weak Popov form, the element has to be minimal.

As a variant of Mulders-Storjohann, the algorithm terminates with the same argu-
ment as the Mulders-Storjohann algorithm: It steps backwards through the helping
function ϕM , which is finite in the beginning.

As the algorithm results in a correct solution candidate, its complexity is of impor-
tance, to be comparable to the Mulders–Storjohann algorithm.
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4.3.2 Complexity

[LNPS15] uses a helper function to describing the complexity of the algorithm to
distinguish between two cases resulting in different complexities.

Definition 4.3.1 (Helper Function ρ)
Let L is the length of a polynomial of Definition 4.1.1 and LT the leading term of a
polynomial. The helper function ρ is defined by:

ρ =

{
max{L(Gi)} if ∀i : LT (Gi) = Gi|degGi

2

,

µ otherwise.
.

Informally, the condition describes that the degree of the second highest term of Gi

has to be lower than half the degree of Gi.

The lemma making the differentiation useful is the following taken from [LNPS15,
Theorem 3].

Lemma 4.3.1
Let a, g ∈ F[x; θ; δ] be non-commutative polynomials with Ore derivative δ = 0,
where a, g fulfil the conditions:

LT (g) = g|deg g
2

deg a < k + deg g.

Then at most L(g)+1 coefficients need to be computed to compute the k-th coefficient
bk = (a mod g)k.

Proof. The computation is based around the degree k, and obviously ak is a neces-
sary factor.

Consider the set S := {j : gj 6= 0, j 6= deg g} of indices of non–zero coefficients of
the modulus g. Then all degrees of the form k + deg g − i with i ∈ S, are part of
the computation for bk.

In general, all relevant factors have the form k + t deg g − i1 − . . .− it < deg a with
t ∈ N0, i` ∈ S. The degree requirement deg a < k+ deg g creates a contradiction for
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t ≥ 2 as:

deg a > k + 2 deg g − i1 − i2

> k + 2 deg g − 2 · deg g

2
= k + deg g

> deg a.

It follows, that t = 1. Together with |S| ≤ L(g), this implies the lemma.

The theorem on the complexity of the demand–driven algorithm is given by [LNPS15,
Theorem 3] and is restated here.

Theorem 4.3.3
Algorithm 2 has a complexity of O(`µ2ρ) over some Ore extension with derivative
zero.

Proof. Besides Line 12 and Line 7, every other line is essentially O(1) (reducing by
one, fixed computations of length one, swapping two tuples of length three). Or they
can be safely ignored, as they are O(`) and not contained in the loop: Initialising a
tuple of length ` and extracting ` leading monomials.

Line 12 is a simple transformation on a single element, its complexity is O(µ) by
Lemma 4.1.2. As the algorithm acts similar to the Mulders-Storjohann algorithm,
its main loop will iterate at most O(`µ) times (cf. Theorem 4.2.3).

Line 7 has a complexity of O(µρ). If the condition for ρ 6= µ is not fulfilled,
the complete polynomial is computed in O(µ2). Otherwise Lemma 4.3.1 states, as
deg λ1si < 2 · deg gi, that at most L(G̃i) + 1 coefficients of λ1s̃i make up the compu-
tation of the coefficient for xd. As a single one can be computed in O(deg g)=O(µ),
they can therefore be computed entirely in O(µL(G̃i)) operations over Fqm .

This results in a complexity of O(`µ2ρ) as claimed by the theorem.

This results in a complexity of O(`µ2) for Gao–like decoding using Gi = x[m] − x
and a complexity of O(`µ3), using unknown polynomials Gi.
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4.4 Summary

This chapter described two algorithms already converted to non–commutative poly-
nomials and their complexity analysis. The Mulders-Storjohann algorithm gives
a fairly simple approach to computing the weak Popov form in O(`2n2) and the
demand–driven algorithm builds on those results for the special case of decoding,
only.

This results in a n-` trade–off for general decoding and in a plain improvement for a
special decoding case. This improvement uses a modulus where the second term has
a degree lower than half the degree of the modulus, for example x[m] − x often used
for Gao–like decoding. The resulting complexity was O(`n2) in the special case. The
next chapter examines an `-n trade–off by converting Alekhnovich’s algorithm.
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In 2002, Alekhnovich introduced an algorithm to compute a reduced basis over regu-
lar polynomial rings in [Ale02]. The paper was refined and also released as [Ale05]. In
this chapter, the algorithm of Alekhnovich will be introduced for non–commutative
polynomials analogue to the structure of its original introduction: In Section 5.1
the basic operator and a correct algorithm will be described and examined. In the
following sections an approximation will be examined for non–commutative poly-
nomials and applied to the algorithm, allowing a divide and conquer strategy to
improve the algorithms runtime.

5.1 Basic Algorithm

Alekhnovich’s algorithm can be understood as a variant of the Mulders–Storjohann
algorithm, it utilises the same concept of simple transformations. A major difference
is its output. Alekhnovich’s algorithm produces a matrix U such that the input
matrix B can be transformed to weak Popov form by multiplying: UB.

Definition 5.1.1 (Singular Element Matrix)
A matrix E[a, b] will be called singular element matrix, if it is of the form

E[a, b] = (ei,j =

{
1 if (i, j) = (a, b)
0 otherwise

)
.

Informally, it is a matrix with only one entry and zeros everywhere else.

Alekhnovich’s algorithm makes heavy use of matrix multiplication, which can be
modelled differently in practice, but their functionality is important, as they accu-
mulate simple transformations.

Lemma 5.1.1
Let T, I,E ∈ F[x; θ; δ]m×m,B ∈ F[x; θ; δ]m×` be some matrices with E[a, b] a singular
element matrix and I the identity matrix. Multiplying T = I + αE[a, b] on the left
to B, TB, will compute an elementary row transformation Ba = Ba + αBb.
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Proof. Let B ∈ F[x; θ; δ]m×` be some matrix to compute a row transformation on:

T ·B = (ci,j =
m∑
k=1

Ti,k︸︷︷︸
=0 for i 6=k and (i,k) 6=(a,b)

·Bk,j)

= (ci,j =

{
Bi,j if i 6= a
Ba,j + Ta,bBb,j else ).

An entry in Ta,b will therefore compute an elementary transformation on row a using
row b: Ba = Ba + Ta,bBb.

The actual algorithm is split in two parts: An elementary reduction operator, Al-
gorithm 3, and an inductive reduction operator, Algorithm 4. The goal of the
elementary reduction operator is to create a matrix that, if left multiplied on the
input matrix, will reduce the degree of the input matrix by one or transform it into
weak Popov form.

Algorithm 3: R(B), the elementary reduction operator.
Input: Basis B ∈ F[x]m×`

Output: Matrix R(B) ∈ F[x]m×m so that either R(B) ·B is in weak Popov
form or deg(R(B) ·B) < degB.

1 let n = degB
2 let U = I
3 while degB = n do
4 if B is in weak Popov form then
5 return U

6 find i1, i2 so that LP (Bi1) = LP (Bi2) and degBi1 ≥ degBi2

7 let j = LP (Bi1)
8 let β = degBi1 − degBi2

9 let α = LC(Bi1,j)/θ
β(LC(Bi2,j))

10 let T = I− αxβEi1i2

11 let U = T ·U
12 let B = T ·B
13 return U

The goal of the inductive reduction operator is to make use of the elementary op-
erator to create a matrix that, if left multiplied to the input matrix, would reduce
the degree of the input matrix by t or transform it into weak Popov form.
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Algorithm 4: R(B, t), the inductive reduction operator.
Input: Basis B ∈ F[x]m×`

Output: Matrix R(B) ∈ F[x]m×m so that either R(B) ·B is in weak Popov
form or deg(R(B) ·B) < degB.

1 let n = degB
2 let U = I
3 while degU ·B > n− t do
4 if U ·B is in weak Popov form then
5 return U
6 else
7 let U = R(U ·B) ·U

8 return U

It is easy to see, that Algorithm 4, if it is correct, with input matrix B and t = degB
will result in a matrix that can be left multiplied on B to bring it into weak Popov
form.

5.1.1 Correctness

Using Lemma 5.1.1, Algorithm 3 can be evaluated for correctness.

Theorem 5.1.1
Let B ∈ F[x; θ; δ]m×` be some matrix over some Ore extension, then Algorithm 3
R(B) computes a matrix U ∈ F[x; θ; δ]m×m such that UB has degUB < degB or
UB is in weak Popov form.

Proof. If B is in weak Popov form in the beginning, the algorithm will terminate
immediately. So we assume that B is not in weak Popov form in the beginning. As
long as the matrix B is not in weak Popov form, a simple transformation can be
computed.

Lemma 5.1.1 states, that a matrix multiplication can be equivalent to applying an
elementary row transformation. Line 10 creates a matrix of the necessary form of the
multiplication matrix of Lemma 5.1.1, with the multiplication constant of a simple
transformation in Theorem 4.1.1. Line 11 is therefore an application of a simple
transformation on U and Line 12 on B.

Matrix multiplication is associative as long as the contained elements are associative.
As Ore extensions are associative [Ore33, Section 1], it follows, for the original
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matrix B and the application of n simple transformations T1, . . . ,Tn, where Ui =
Ti ·Ti−1 · . . . ·T1:

Un ·B = Tn ·Un−1 ·B
= Tn ·Tn−1 · . . . ·T1B

= (Tn · (Tn−1 · (. . . · (T1B) . . .))).

Multiplication by Un is therefore equivalent to sequential application of n simple
transformations.

As established in Lemma 4.1.1, a simple transformation will either reduce the degree
of the target row, therefore reducing the degree of the matrix, or it will reduce the
leading position. If the degree is decreased, the algorithm terminates. If the leading
position is reduced, the matrix might have turned into weak Popov form. If the
matrix is not in weak Popov form, the conditions for further simple transformations
are kept, due to the only condition being the existence of a leading position conflict.
After at most m` simple transformations the degree has to decrease.

Based on the correctness of its building block Algorithm 3, Algorithm 4 can be
evaluated for correctness.

Theorem 5.1.2
Let B ∈ F[x; θ; δ]m×` be some matrix over some Ore extension, then Algorithm 4
R(B, t) computes a matrix U ∈ F[x; θ; δ]m×m such that UB has degUB ≤ degB− t
or UB is in weak Popov form.

Proof. Algorithm 3 gives a matrix U that reduces the degree of B by at least one
or brings it into weak Popov form. As the degree can no longer be reduced, if the
matrix is in weak Popov form, the algorithm will terminate if UB is in weak Popov
form.

Due to the non commutativity the multiplication order is important. As R(UB)
will return a matrix that is left multiplied on UB, it has to be left multiplied on
U. The resulting chain will have the form UtUt−1 . . .U2U1B. After at most t calls
to Algorithm 3, the matrix UB will be in weak Popov form or it will hold that
degUB ≤ degB− t, as every call reduces the degree by at least one.

Theorem 5.1.3
Algorithm 4 terminates.

Proof. Algorithm 3 terminates as there are at most m` steps to compute until the
degree has to decrease. As the degree is finite and lower bounded by zero, Algo-
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rithm 4 has to terminate as well, as it does finite calls of a function that itself has
upper bounded finitely many steps.

5.1.2 Complexity

As Algorithm 3 is a subroutine of Algorithm 4, not all restrictions of Section 4.1.2 can
be applied. The number of conflicts of leading positions within the matrix is one, but
the general form of the matrix is unknown, as it is a subroutine of Algorithm 5 and
Algorithm 5 might change the form of the matrix, but not the number of conflicts,
as stated by Lemma 4.1.3.

Theorem 5.1.4
Considering a matrix M ∈ F[x; θ; δ]`×` with at most one conflict of leading positions
over the Ore extension with θ(a) = aq and δ = 0 over some finite field Fqm, the ele-
mentary reduction operator Algorithm 3 has runtime complexity O(`2 maxi{degBi}).

Proof. As there is only one conflict, there will be at most ` − 1 loops before the
degree of the matrix will decrease or the matrix being in weak Popov form. This is
due to Lemma 4.1.1, as a simple transformation that does not decrease the degree
will have to lower the leading position. Lemma 4.1.3 states there will always be at
most one leading position conflict. This conflict has to move to a lower positions
every iteration, or lower the degree, as stated by Lemma 4.1.1. There can only be
` − 1 different leading positions without the matrix being in weak Popov form, so
there can only be `− 1 conflicting positions.

Besides checking for the correct form in Line 4, as well as the application of simple
transformations on B in Line 12, everything is considered a free operation. The if
statement as well as finding conflicting rows and fixing the leading position can be
done in O(`) time, as one only has to search the last changed row, it might need
O(`2) preparation time. Extracting the degrees and coefficients is a matter of data
structures and is therefore considered O(1).

Line 12 and Line 11 are applications of simple transformations on B and U. For
those, Lemma 4.1.2 states the complexity for the computation of one row element
f of a simple transformation as O(L(f)). Applying this on a row i results in
O(`maxj{L(Mi,j)}).

For the simple transformation on U this can be further reduced, as it is created out
of an identity matrix. A simple transformation can not involve the same two rows,
as this would imply a decrease in degree. For the length of a polynomial in U to
increase, one element has to be the target of at least two simple transformations.
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U is an identity matrix at the beginning, this implies that for changing the same
element by elementary row operations, the same row has to be involved twice as a
source. As the leading position lowers every round, this is impossible. The maximum
length of polynomials in U is therefore 1. This results in a complexity of O(`) for
the simple transformation on U.

As the length of elements in B might change during simple transformations, it can
be upper bounded by the highest degree of an element in B. The complexity can
then be summed up as O(`·(`maxi,j{degBi,j}+`)+`2) and the theorem follows.

For the inductive reduction operator, the full restrictions will apply. As it utilises
Algorithm 3, the complexity of Algorithm 4 will build upon Theorem 5.1.4. As ma-
trix multiplication is a central operation in Algorithm 4, its complexity is important.
As stated in Section 4.1.1, it is usually denoted by O(`ω) multiplications, where ω is
understand to be 2 ≤ ω ≤ 3 and is usually implemented by the Strassen algorithm
of [Str69] with ω ≈ 2.8.

Theorem 5.1.5
For some matrix B ∈ F[x; aq; 0]`×` obeying the introduced restrictions of decoding, the
inductive reduction operator Algorithm 4 has runtime complexity O(t`ω maxi degBi).

Proof. As Algorithm 3 reduced the degree by at least one, there are at most t loop
passes and calls to Algorithm 3. For a single run, Theorem 5.1.4 gives a complexity
of O(`2 maxi{degBi}), and the proof states, that every returned U only contains
monomials.

There are two matrix multiplications, UB and R(UB)U per loop. The multipli-
cation by U does not need to be redone every loop pass, only the newly acquired
result of a call to Algorithm 3 has to be applied. As a newly generated U contains
only monomials, the multiplication complexity depends on the degrees of B. A mul-
tiplication by a monomial can be done linearly in the length of the non–monomial
polynomial.

An important remark here is that the linearly computation of the multiplication only
holds for δ = 0 and an automorphism θ that can be computed in O(1) regardless of
the number of its applications. This is due to the multiplication having the form

αxβp(x) =

deg p∑
i=0

αθβ(pi)x
β+i.

The condition check can be done linearly in the matrix size with a preparation time
of O(`2), as there is always only one conflict and a hidden data structure could
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update this throughout calls to Algorithm 3.

This sums up to a complexity of

O( `2︸︷︷︸
preparation time

+t(`2 max
i

degBi︸ ︷︷ ︸
calls to R(B)

+ `ω max
i

degBi︸ ︷︷ ︸
matrix multiplications

)),

which can be simplified to O(t`ω maxi degbi), as long as ω ≥ 2.

To generally compute a matrix in weak Popov form, it is sufficient to compute
R(B, ∆B)B, because the orthogonality defect has to be zero in weak Popov form
and is based on the degree. For a matrix in the form of the Gao–like decoding
matrix, it is sufficient to compute R(B, degB1 − v1)B, because of Lemma 4.1.4.

5.2 Accuracy Approximation of Polynomials

To speed up the algorithm, [Ale05] uses an approximation for polynomials. This
mainly reduces computational complexity by shortening the polynomials that are
multiplied, as the multiplication of polynomials depends on the number of terms.

Definition 5.2.1 (Accuracy Approximation)
The approximation to accuracy t ∈ N\{0} for a polynomial p is

p|t = π(p · xt−deg p−1)xdeg p+1−t.

Where π : F[x, x−1]→ F[x] is the linear mapping defined by

π(x) =

{
xk −→ xk : k ≥ 0
xk −→ 0 : k < 0

.

Informally, p|t reduces p to the first t terms. This includes terms with coefficient
zero as long as their degree is strictly smaller than deg p.

Accuracy approximation for F [x; θ; δ] works as it does for regular polynomials since
only regular multiplication occurs:
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p|t = π(p · xt−deg p−1)xdeg p+1−t

= π(

deg p∑
i=0

pix
i · xt−deg p−1)xdeg p+1−t

= π(

deg p∑
i=0

pix
i+t−deg p−1)xdeg p+1−t

(∗)
=

deg p∑
i=deg p+1−t

pix
i+t−deg p−1 · xdeg p+1−t

=

deg p∑
i=deg p+1−t

pix
i+t−deg p−1+deg p+1−t

=

deg p∑
i=deg p+1−t

pix
i.

The transformation (∗) is due to

i+ t− deg p− 1 ≥ 0 (Condition of π(x))

⇔ i ≥ deg p+ 1− t.

This approximation can now be extended to vectors of polynomials using the degree
of a vector.

Definition 5.2.2 (Accuracy Approximation for Vectors and Matrices)
Let v = (p1, p2, . . . , p`) ∈ F[x; θ; δ]` be a vector of Ore polynomials with deg v =
maxi{deg pi} and polynomials pi =

∑deg pi
k=0 pi,kx

k. The accuracy approximation to a
depth t is defined by

v|t = (pi =

degv∑
k=degv−t+1

pi,kx
k).

Let M ∈ F[x; θ; δ]m×` be some matrix of polynomials. The accuracy approximation
of depth t M|t is defined by a row–wise application of the approximation:

M|t =


M1|t
M2|t
...

Mm|t

 .

60
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Informally, this does not reduce the polynomial to the first t terms, but up to t
terms starting from the maximum degree within the vector. Example 5.2.1 gives an
example for this.

Example 5.2.1 (Accuracy Approximation for Vectors and Matrices)
Take v = (11x7 + 9x6 + 12x4 + 9x, 5x6 + 2x4 + 7x2, 12x2 + 1) as a vector, the
degree of v is deg v = 7. The approximation to depth t = 8 would be the original
vector. Some values for this vector are listed in Table 5.1.

t = 8 v|8 = (11x7 + 9x6 + 12x4 + 9x, 5x6 + 2x4 + 7x2, 12x2 + 1)
t = 7 v|6 = (11x7 + 9x6 + 12x4, 5x6 + 2x4 + 7x2, 12x2)
t = 2 v|2 = (11x7 + 9x6, 5x6, 0)
t = 1 v|1 = (11x7, 0, 0)

Table 5.1: List of example approximations.

Let M be the matrix

M =

x2 + 1 3x2 x2 + x
2x5 x2 + x 5x+ 1
0 0 1

 .

The following two approximations of depth t = 1 and t = 4 shall be exemplary.
Every row is treated separately:

M|1 =

 x2 3x2 x2

2x5 0 0
0 0 1

 , M|4 =

 x2 3x2 x2 + x
2x5 x2 0
0 0 1

 .

This approximation will allow improvements on the original algorithm.

5.3 Improvement

To calculate the matrices using the most suited approximation, Alekhnovich chose
a recursive divide an conquer strategy when including the approximation. The
resulting algorithm, altered for row–wise computation over a left Ore ring, is given
by Algorithm 5 and called the improved recursive reduction operator.

It does as many calls to Algorithm 3 as Algorithm 4 does. Its performance gain
stems from computing over shorter polynomials.
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5 Alekhnovich’s Algorithm

Algorithm 5: R̂(B, t), the improved recursive reduction operator.
Input: Basis B ∈ F[x]m×`

Output: Matrix R(B) ∈ F[x]m×m so that either R(B) ·B is in weak Popov
form or deg(R(B) ·B) < degB.

1 let B = B|t
2 if t = 1 then
3 return R(B)

4 let U1 = R̂(B, bt/2c)
5 let B1 = U1 ·B
6 return R̂(B1, t− (degB− degB1)) ·U1

5.3.1 Correctness

The proof of correctness is analogue to the original proof of correctness of [Ale05].
First, there are two identities that are useful for the proof of correctness.

Lemma 5.3.1
It holds for Algorithm 3 as R(M), that

R(B) = R(B|1).

Proof. Let u.v ∈ F[x; θ; δ]` be rows of a matrix B with degu ≥ deg v and the same
leading position. A simple transformation can either reduce the degree or reduce
the leading position of u.

If the degree is reduced, the simple transformation is added as a matrix multiplica-
tion and the algorithm terminates. The result is the same for the algorithm with
or without approximation, as the simple transformation only relies on the terms of
maximum degree.

If the degree is not reduced, it holds, that:

(u− αxβv)|1 = (u|1 − αxβv|1)|1,

because degαxβv is either zero or equal to degu and the transformation can not
introduce any terms of degree degu during multiplication, as they are all strictly
smaller than that. The additional approximation on the right side is necessary as
Ore multiplication can introduce lower degree terms. It still implies the theorem, as
the simple transformations are only computed using the highest degree in each row,
it is therefore only important that no new terms of this degree are introduced.
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5.3 Improvement

The approximation will only change the outcome after a degree decreasing simple
transformation, but the algorithm terminates in this case.

This result can be extended to the inductive reduction operator.

Lemma 5.3.2
It holds for Algorithm 4 as R(M, t), that

R(B, t) = R(B|t, t).

Proof. Lemma 5.3.1 implies that R(B) will compute the same result for two matrices
A,C, as long as A|1 = C|1.

Assume that for one s ≤ t it holds, that A|s = C|s. After one application of
R(A) = R(C) on each matrix, the degree decreases by d and the approximation
changes by d as well:

(R(A)A)|s−d = (R(C)C)|s−d.

This is true, because for some accuracy t it holds, that

xdv−t−1xβ=du−dv = xdu−dv+dv−t−1

= xdu−t−1.

So a term not in scope before the approximation to depth t is not in scope if the
new approximation is up to depth t− d where d = duold − dunew is the difference in
degree.

Algorithm 4 is an iteration over R(B), so it computes R(A, s) for s < t.

As soon as the degree decreased by t, the algorithm stops and R(B) is not called
any further, so the resulting matrix can not diverge.

Using these theorems, the correctness of the actual algorithm can be examined.

Theorem 5.3.1
Let B ∈ F[x; θ; δ]m×` be some matrix over some Ore extension, then Algorithm 5
R̂(B, t) computes a matrix U ∈ F[x; θ; δ]m×m such that UB has degUB ≤ degB− t
or UB is in weak Popov form.

Proof. As Algorithm 4 R(M, t) should be equivalent to Algorithm 5 R̂(M, t), in
combination with Theorem 5.1.2, it suffices to show that

R̂(B, t) = R(B, t).
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5 Alekhnovich’s Algorithm

Using Lemma 5.3.1, it is clear for t = 1 that

R̂(B, 1) = R(B|1) = R(B) = R(B, 1).

The induction step for t > 1 will utilise the recursive definition:

R̂(B, t) = R̂((U1B|t), t− (degB− degU1B|t)) ·U1

= R̂(R̂(B|t,
⌊ t

2

⌋
)

Step to t
2

·B|t, t− (degB|t − deg(R̂(B|t,
⌊ t

2

⌋
) ·B|t))︸ ︷︷ ︸

already achieved degree reduction

) · R̂(B|t,
⌊ t

2

⌋
)

Step to t
2

IS
= R(R(B|t,

⌊ t
2

⌋
) ·B|t, t− (degB|t − deg(R(B|t,

⌊ t
2

⌋
) ·B|t))) ·R(B|t,

⌊ t
2

⌋
)

(1)
= R(B|t, t)

(2)
= R(B, t)

Steps (1) and (2) are crucial. Step (2) is an application of Lemma 5.3.2.

Step (1) utilises the behaviour of Algorithm 4 to compute the reductions by one
consecutively. For any k with 0 < k ≤ t, Algorithm 4 first computes a reduction
by k and then by t − k. The reduction matrices are then combined. As matrix
multiplication is associative, the order is of no importance:

R(B, t) = U

= TtTt−1 . . .Tk+1

t−k many︸ ︷︷ ︸
=Wt−k

TkTk−1 . . .T2T1

k many︸ ︷︷ ︸
=Wk

(∗)
= Wt−kWk

= R(R(B, k)B, t− k)R(B, k).

Note that the term Wt−k introduced in step (∗) is a place holder for the product
Tt . . .Tt−k+1 and not identical to the matrix Tt−k of the previous step. If Ti trans-
formed Ti−1 . . .T1B into weak Popov form, it would follow for all j > i that Tj = I
is the identity matrix.

This induction proves the theorem.

As the algorithm is deemed correct, its complexity is of interest.

5.3.2 Complexity

The complexity of Algorithm 5 will be examined in context of decoding, as this allows
for much more fine grained analysis. The complexity of general reduction using the
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5.3 Improvement

algorithm will be worse as the assumptions made, for example no introduction of
lower degree terms during simple transformation, would not hold.

Theorem 5.3.2
Let 2 ≤ ω ≤ 3 be the number indicating complexity of matrix multiplication. Under
the restrictions proposed in Section 4.1.2, Algorithm 5 has a runtime complexity of
O(`ωM(t) log t).

Proof. The complexity will be split in the complexity of all calls to Algorithm 3
and the rest of the algorithm. The complexity of the approximation will not be
considered. Actual storage of the polynomials is implementation dependent, but an
example implementation using a list or array to store coefficients, could be modified
to ignore coefficients after t entries.

The accuracy approximation of depth t ensures that the polynomials in R(B) can
not get longer. As the length is one, this reduces the complexity of Algorithm 3 not
only to O(`2 maxi,j{L(Bi,j)}), but to O(`2). The complexity for at most t calls to
Algorithm 3 is therefore O(t`2).

Further let f(t) describe the complexity of Algorithm 5 without the calls to Algo-
rithm 3. As Algorithm 5 does two recursive calls that add up to t of size around t

2

this can be modelled by two calls of size t
2
. It holds, that

f(t) ≤ O(`ωM(t)) + 2f

(
t

2

)
.

This expands until f(1) is called as a base case. This is the case as soon as

1 ≥ t

2x

⇔ 2x = t

⇔ x = log t.

This could be verified using the master theorem of computational complexity.

So f(t) can be estimated as

f(t) ≤ O(`ωM(t) log t).

The combined complexity of Algorithm 5 can be summed up asO(`ωM(t) log t+`2t+
`2t log t) and, assuming M(t) ≥ t and ω ≥ 2, can be simplified to O(`ωM(t) log t).
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5 Alekhnovich’s Algorithm

Using the introduced µ and the complexity for multiplication, the following theorem
compiles the analysis for comparison with earlier findings.

Theorem 5.3.3
There is an algorithm to compute the weak Popov form of a matrix abiding Sec-
tion 4.1.2 in O(`ωµ1.69 log µ) with µ = maxi{degBi,i − vi}.

Proof. To compute the weak Popov form of a matrix B ∈ F[x; aq; 0]`×` using
Alekhnovich’s algorithm the computation R̂(B, ∆B)B is necessary, where R̂ is Al-
gorithm 5. The post processing matrix multiplication can be done in O(`ωM(µ)) as
µ limits the length of the polynomials.

The invocation of Algorithm 5 can be transformed to R̂(B, µ− v1) because of The-
orem 4.1.2, which results in a complexity of O(`ωM(µ− v1) log(µ− v1)). Multipli-
cation can be done in O(n1.69) as stated in [WZ13, Section 3.1.3].

As v1 ∈ N0, the resulting complexity is O(`ωµ1.69 log µ).

5.4 Post–Computation

As Alekhnovich’s algorithm only computes a matrix that can transform the base
matrix into weak Popov form, a matrix multiplication is necessary afterwards. This
implies an additional factor of O(`ωM(n)) with n the largest degree within the
matrix.

This step can be reduced to a vector-matrix multiplication for decoding. While this
has no implication on the overall asymptotic complexity of the algorithm, in practice
this might speed up the decoding process.

Theorem 5.4.1
Using information of within the algorithm, the complexity to compute the solution
vector for decoding after applying Alekhnovich’s algorithm is O(`2M(n)).

Proof. The only row of interest is the row with leading position in the first column,
as every other row will fail the degree conditions. For decoding of the form of
Section 4.1.2, the matrix is in weak Popov form if and only if a leading position
switches to column one.

This is true, as the matrix contains only one conflict of leading position. No leading
position is in position one, the first column, as for the row i with 2 ≤ i ≤ ` the
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leading position is, in the beginning, on the diagonal:

LP (Bi) = i.

To remain in conflict after a simple transformation, the target of the previous simple
transformation has to have a leading position different from one, as all other leading
positions are still different from one. If a leading position equals to one, the single
conflict has to be resolved.

The last operation will result in this resolution, as the algorithm will terminate
afterwards. The target row of the last operation is the row of interest, as it has
leading position one. Retrieving this information can be done without impact on
computational complexity.

Let i be the row of interest. Computing (UB)i is equivalent to computing UiB
which is only a multiplication of a vector by a matrix:

z = (zj =
∑̀
k=1

Ui,kBk,j).

This can be done in O(`2M(n)).

5.5 Summary

This chapter converted Alekhnovich’s algorithm to general non–commutative poly-
nomials. This allows the application of the algorithm to decode Gabidulin codes.
An analysis of its performance on decoding resulted in a runtime of O(`ωn1.69 log n),
where ω is the complexity of matrix multiplication. It can be assumed that ω = 2.8.

The next chapter will examine the special case of non–interleaved decoding using
Alekhnovich’s algorithm.
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6 Regular Decoding Using
Alekhnovich’s Algorithm

For non–interleaved decoding of Gabidulin codes, Theorem 3.2.3 gives a solution
matrix of fixed size ` = 2. This chapter will examine the results of Chapter 5 in the
context of non–interleaved decoding.

6.1 Sub–Quadratic Decoding

For a complete decoding process, the complexity of module minimisation is not
sufficient, see Section 3.3. For actual decoding the following steps are necessary:

1. Interpolation of the received word r to get r̂.

2. Solving the key equation using module minimisation.

3. Retrieval of the information polynomial by division.

These steps are more formalised in Algorithm 6.

Algorithm 6: decode(CG, r), Modified [WZ13, Algorithm 3.6].
Input: Gabidulin code CG and a received word r
Output: Information polynomial f or decoding failure.

1 let r̂ be the interpolation of r
2 let (λ, ψ) be the row with leading position one calculated using Alekhnovich
3 let (f, remainer) = LeftDivision(λ, ψ)
4 if remainer = 0 then
5 return f
6 else
7 return “Decoding failure”

The minimal subspace polynomial can be precomputed and does not change, so the
complexity of calculating it is not relevant.
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6 Regular Decoding Using Alekhnovich’s Algorithm

Interpolation

The first step, interpolation, as described in Definition 3.2.4, provides a limit of
complexity of interpolation.

Theorem 6.1.1
The complexity of interpolation is at most O(n2).

Proof. All minimal subspace polynomials can be precomputed. The only relevant
computation to interpolate a received word is multiplication by ri and summation
of all terms. The additions are ignored, as they are dominated by complexity of
multiplication.

There are n multiplications by a factor ri ∈ Fqm to be done. A multiplication of this
sort has a complexity of O(degq L), where L ∈ Lq[x] is the function being multiplied
on. L is a minimal subspace polynomial and has, according to [WZ13, Lemma 2.9], a
degree of degq L = dim(U), where U is the space of the minimal subspace polynomial
L = MU .

The dimension of 〈G\gi〉 is n − 1 as all gi are linear independent. This results in
a degree degq L = n − 1 and a complexity of O(n(n − 1)) = O(n2) multiplications
over Fqm for n multiplications.

[WZ13] uses special properties of certain bases to compute the interpolation using
the q-transform and its inverse. Although not possible for all parameters, as n has
to divide m, this allows a computation of the interpolation using the q-transform.

This can be done in O(n3) over Fq instead of Fqm , due to the ext transformation.
Even though the reverse is not true, a linear operation in Fqm can be computed
in O(n3), using the ext mapping, operations over Fq. This can be considered sub–
quadratic computation of the interpolation and is used in Line 1.

Further research showed the possibility of computing the q-transform using a Hankel
matrix, resulting in quasi linear time complexity for interpolation. See [MRT05] as
a Hankel matrix is similar to Toeplitz matrix, because a Hankel matrix H can be
written in the form H = JT for a Toeplitz matrix T and a matrix of the form:

J =

0 0 1
... . .

. ...
1 0 0

 .
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6.1 Sub–Quadratic Decoding

Solving the Key Equation

Solving the key equation can be done using module minimisation. The process
of module minimisation is explored in Chapter 4. This resulted in Alekhnovich’s
algorithm with complexity O(`ωµ1.69 log µ), which is used in Line 2. For ` = 2 this
results in a complexity of O(n1.69 log n) for the length of a codeword n.

Theorem 6.1.2
It holds, that

n1.69 log n = o(n2).

Proof. For f = o(g) to be true, it is sufficient to show

lim
x→∞

∣∣∣∣fg
∣∣∣∣ = 0.

In this case it is f = n1.69 log n and g = n2. The limit can be calculated in the
following way:

lim
n→∞

∣∣∣∣n1.69 log n

n2

∣∣∣∣ = lim
n→∞

∣∣∣∣ log n

n0.31

∣∣∣∣
(∗)
= lim

n→∞

∣∣∣∣∣ ddn log n
d
dn
n0.31

∣∣∣∣∣
= lim

n→∞

∣∣∣∣n−1 log−1(2)

n−0.69

∣∣∣∣
= lim

n→∞

∣∣∣∣ 1

n0.31 log(2)

∣∣∣∣
= 0.

Step (∗) is an application of l’Hôpital’s rule as limn→∞ n
0.31 = ∞ = limn→∞ log n.

Therefore, an algorithm of complexity O(n1.69 log n) can be called sub–quadratic.

Division

For division there have been efforts to reduce division for skew polynomials to mul-
tiplication. While [WZ13] gives a complexity of O((n −m)m), which is quadratic,
[CL12, Section 2.1.2] describes an algorithm reducing the division to the complexity
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6 Regular Decoding Using Alekhnovich’s Algorithm

of multiplication. As multiplication can be done in O(n1.69), this implies a sub–
quadratic division. Using this result in Line 3 results in an algorithm of the form of
Algorithm 6, that can be considered sub–quadratic.

6.2 Importance

Even though Alekhnovich’s algorithm on its own does not yield a sub–quadratic
decoding algorithm, it solves an important step of the decoding algorithm in sub–
quadratic complexity considering runtime. Both other steps are actively researched
and quite possibly solvable, or can be considered solved, in sub–quadratic time. This
would imply a sub–quadratic decoding algorithm for decoding of regular Gabidulin
codes.
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7 Conclusion

This thesis mainly considered a conversion of Alekhnovich’s algorithm of [Ale05].
The algorithm performs well over Ore extensions with few adaptations. Table 7.1
gives a short comparison of the algorithms that have been converted for module
minimisation over Ore extensions by [LNPS15] and Alekhnovich’s variant of this
thesis.

In this table the parameter ` describes the size of the matrix, in context of decoding,
` measures the size of the interleaving. The parameter n is a measure of the degree
of the involved polynomials or the size of the codewords. The parameter ω describes
the complexity of matrix multiplications. A naive implementation uses ω = 3, while
there are known algorithms for ω ≈ 2.374 (cf. [CW90]), in practice it can be assumed
to be ω ≈ 2.8 (cf. [Str69]).

Algorithm Complexity
Mulders–Storjohann Section 4.2 O(`2n2)
Demand–Driven Section 4.3 O(`n3) (Special Case O(`n2))
Alekhnovich Chapter 5 O(`ωn1.69 log n)

Table 7.1: Comparison of the runtime of the converted algorithms for decoding
over non–commutative polynomial matrices, where 2 ≤ ω ≤ 3 describes the

complexity of matrix multiplication.

While the demand–driven algorithm is a clear improvement over the classic Mulders–
Storjohann algorithm for the special case described in Section 4.3, it offers an `− µ
trade–off. Alekhnovich’s algorithm on the other hand, offers a µ − ` trade–off.
For non–interleaved decoding Alekhnovich’s algorithm implies a sub–quadratic al-
gorithm to solve the key equation, as

n1.69 log n = o(n2).

This gives an important step for feasible sub–quadratic decoding of Gabidulin codes.
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7 Conclusion

Further Research

This thesis only highlights the step of module minimisation and does not touch
on the complexity of interpolation, root finding or other steps. There are different
approaches, aside from module minimisation, to decoding of Gabidulin codes, which
are not included and compared for their complexity.

As Alekhnovich’s algorithm depends on the complexity of multiplication, its com-
plexity would improve if faster methods of multiplication could be applied. The full
decoding would profit from a fast division algorithm.

At last an implementation of the algorithms in this thesis and an analysis of its real
world application, would be an important step to take.
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Notations

Notation Summary
q Power of a prime.
[i] = qi q-power for some integer i.
Fq Finite field of order q.
Fqm Extension field of a finite field of order q of degree m.
Fmq Space of dimension m over a finite field of order q.
F [x; θ; δ] Ore extension of field F with derivative δ.
Lq[x] Ring of linearised polynomials (see definition 2.2.1).

c = (c1, . . . , cn) Codeword of length n.
e = (e1, . . . , en) Error word of length n.
r = (r1, . . . , rn) = c+ e Received word of length n.
E = {i : ei 6= 0} Set of error positions.
Λ Error locator or error span polynomial.
λ A solution candidate for Λ.
Ω = Λf Abstraction of the right hand side of equation 3.3.
ψ A solution for Ω.

M A matrix M.
Mi The i-th row of some matrix M.
Mi,j The j-th element of the i-th row of some matrix M.
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