
Design of a Privacy-Preserving Decentralized
File Storage with Financial Incentives

Abstract—Surveys indicate that users are often afraid to
entrust data to cloud storage providers, because these do not
offer sufficient privacy. On the other hand, peer-2-peer-based
privacy-preserving storage systems like Freenet suffer from a lack
of contribution and storage capacity, since there is basically no
incentive to contribute own storage capacity to other participants
in the network.

We address these contradicting requirements by a design
which combines a distributed storage with a privacy-preserving
blockchain-based payment system to create incentives for partici-
pation while maintaining user privacy. By following a Privacy by
Design strategy integrating privacy throughout the whole system
life cycle, we show that it is possible to achieve levels of privacy
comparable to state-of-the-art distributed storage technologies,
despite integrating a payment mechanism.

Our results show that it is possible to combine storage
contracts and payments in a privacy-preserving way. Further,
our system design may serve as an inspiration for future similar
architectures.

I. INTRODUCTION

There is a big demand for outsourcing storage to external
providers, e.g. for remote backup, network-wide file access, or
for sharing files among users. One major concern when using
these systems is privacy, as system operators may learn file
content or at least meta-data about your online activities.

Apart from commercial cloud storage providers there are
decentralized peer-to-peer storage networks with a focus on
privacy like Freenet [3] or GNUnet [2]. There, users allocate
parts of their hard drives to store files for other network
participants.

These peer-to-peer storage networks suffer from a freerider
problem and missing storage capacity due to non-existent
incentives to contribute storage. There are simply no advantages
in storing files for other participants. One could add a
financial incentive system to Freenet or GNUnet, but naı̈vely
implemented this will negatively affect privacy.

We aim to address these two contradicting requirements
by combining a privacy-enhanced payment scheme on the
basis of blockchain and smart contracts technology with a
distributed storage system. Users can enter smart contracts with
storage providers to exchange amounts of a digital currency
against storage of a file. These contracts along with money
transfers are stored in a blockchain. This provides a way to
reward participants who contribute their storage resources to
the network. By designing a privacy-enhanced smart contracts
system, those contracts cannot be abused to retrieve meta-data
on user activities. For file data, we rely on existing mechanisms
for file encryption in cloud storage.

Related Work: Previous approaches to design a decen-
tralized storage system with integrated payment, like Perma-
coin [15] or Retricoin [24] focus on substituting the proof
of work mechanism of Bitcoin-like blockchains with more
ecological alternatives. These schemes support the storage of a
static file, which is chosen at the setup time of the system by
the creator of the blockchain. Therefore these schemes offer
no distributed file storage in the proper sense.

KopperCoin [11] is an alternative concept which also replaces
the proof of work, but was designed to provide storage of
arbitrary user files and thus serve as distribute file storage like
Freenet or GNUnet but with integrated payment mechanism.

However, KopperCoin misses to take privacy considerations
into account. To store a file in the KopperCoin system, users
issue a store transaction to the blockchain, thereby revealing
their public key. Thus, the scheme links file identifiers to public
keys of the users which can be seen as a user pseudonym. On
the level of transactions KopperCoin provides the same amount
of privacy as Bitcoin, which is understood to be insufficient [14],
[23].

Our Contribution: The contributions in this paper can be
summarized as follows:
• We propose a novel design of a privacy-preserving de-

centralized storage system including a privacy-preserving
payment mechanism based on ring signatures and one-time
addresses.

• We implemented significant parts of our design to test the
practical feasibility of our system.

• Finally, we provide an extensive discussion of the privacy
and security guarantees our system offers.

In Section II we introduce the foundations necessary for
understanding the remainder of this article. Section III contains
a detailed description of our system. The security and privacy
properties of our system are discussed in Section IV. Finally,
we conclude this paper with Section V.

II. BUILDING BLOCKS

A. Bitcoin and the Blockchain

Bitcoin [16] is the first widely successful decentralized
electronic payment system. In the Bitcoin system, participants
called miners vote on the validity of transactions and include
them in so-called blocks. Since there are no fixed participants
in Bitcoin, the votes cannot be bound to identities. Instead,
miners effectively “vote” with their computational power, since
a valid block needs to have a small hash value. If a valid block
is found, it is broadcast into the network.



Each block includes a reference to the previous block, thus
the blocks form a chain, which is called blockchain. The
blockchain serves as an immutable global ledger of transactions.
If two or more miners find a block approximately at the same
time a fork occurs. This means that there are multiple blocks
referencing the same previous block. In this case the miners
continue to mine at one of the ends until one of the chains is
longer. From this point on by consensus the longer chain is
extended and the other is deemed invalid.

Miners are rewarded for supporting the system with their
computational power through a special transaction, called
coinbase. This transaction grants a miner a fixed amount of
a virtual currency, called Bitcoins, for each block the miner
found. These Bitcoins are freshly introduced into the system
and have no previous owner.

Transactions in Bitcoin consist of inputs and outputs. Each
transaction input has a reference to a previous transaction output
which it spends. There are mostly three types of outputs: one
output for the recipient R of the payment, one output for
change, and one output for transaction fees. The transaction
output for change provides divisibility of the money. This is
necessary if the sender S of the transaction is not in possession
of a transaction output with the proper amount. The transaction
fee in Bitcoin is handled implicitly as the difference between
the amounts of the inputs and the amount of the outputs. The
fee is given to the miner who includes the transaction in a block,
thereby serving as an incentive to include this transaction. The
payment channels are shown in Figure 1.

S

S
p+c+f //

f
''

p //

c

77

R

M
Figure 1. A payment p from a sender S to a recipient R, including change
c returning to S and a mining fee f kept by the miner M, who mined the
block including the transaction.

If there are multiple transactions claiming to spend the same
transaction output this situation is detected by the miners, which
only accept the first of these transactions. Such a situation is
termed a double spend.

Transaction outputs in Bitcoin are realized with a domain
specific language which specifies the terms under which the
transaction can be spent. For a simple payment to another
party, it consists mainly of the (hash of their) public key of
the receiver which serves as a pseudonym. This implies that
the transaction history of each token in the Bitcoin system is
traceable, yielding very limited privacy since any observer can
see the transaction recipients.

Using multiple public keys does not mitigate the problem,
since they can often be linked by distinguishing between change
and intended receiver in the transaction outputs (see [14], [23]).

B. One-time Payment Addresses

The blockchain-based cryptocurrency Cryptonote [27], fo-
cussing their development on privacy, introduced so called
one-time payment addresses. This is a mechanism which takes
the idea of using multiple public keys to the extreme.

Instead of simply referencing the recipient by its public key,
the sender derives a new temporary public key per transaction
output using a random nonce and the recipient’s long-term
public key. The derived one-time public key, called destination
key and the original public key of the recipient are unlinkable
without knowledge of the private key. The recipient can recover
the private key corresponding to the destination key by using
his private key and a transaction public key which is included
in the transaction by the sender.

By signing with the recovered private key, the recipient can
prove that she was in fact the intended recipient, and thus spend
the funds, without revealing her identity or that the transaction
belongs to her (long-term) private key.

A more extensive treatment can be found in the original
whitepaper of Cryptonote [27] or in the work of Noether
et al. [19].

One-time payment addresses provide unlinkable transac-
tions ([21], [27]), i. e. , an observer cannot prove that any two
transactions were sent to the same user.

C. Linkable Ring signatures

Ring signatures were first introduced by Rivest, Shamir and
Tauman [22] in 2001. A ring signature is a digital signature
which proves that the signer belongs to a group of signers.
The signer needs its own private key, as well as the set of
public keys of the other members in the group to create a ring
signature. Especially, no group setup procedure is necessary.
For verification, the signature, as well as the set of public keys
of the members in the group is needed. Ring signatures can
be used to prove membership in a group without revealing the
identity.

In cryptocurrency systems ring signatures can be used to
sign transactions. Using this mechanism a transaction input
references multiple outputs of which one is the real output
and the others are there to increase privacy. The signature is
created over all outputs which are referenced in the transaction
input. Of course, the amounts of the referenced transactions
need to be equal, since otherwise the real amount cannot be
determined from the set of referenced transaction outputs.

To prevent double spending in cryptocurrencies one needs
to be able to link two signatures of the same signer. Thus, a
simple ring signature does not suffice, but instead one needs
a so-called traceable ring signature or linkable spontaneous
ad-hoc group signature (LSAG) (cf. [6], [13], [27]). These
allow an observer to link multiple signatures if they have the
same signer without revealing its identity.

If an attacker tries to spend the same funds twice, it needs to
create two transactions with one signature each, for the same
transaction output. These signatures are linked and thus the
second transaction is dropped as invalid by the miners.



Cryptonote [27] and many of its derivatives like Monero or
Bytecoin currently use a variation of the FS-signatures [6]. In
our system we use a linkable variation of LWW-signatures [13]
since these are shorter. We sketch the scheme in the following,
based on the work of Shen Noether [18].

Let G be an elliptic curve with generator G. Let Pi ∈ G,
i = 1, . . . , n be the public keys of the members in the ring.
Assume that for the j-th public key we know the corresponding
private key x with Pj = xG. Let I = xHp(Pj) be the key
image, where Hp is a hash function returning a point on the
elliptic curve. The key image is used to enable linking of the
signatures. Note that knowledge of the key image does not
reveal the signer since x is private.

Let m be a message we want to sign, H a hash function.
Let α, and si for i = 1 . . . , n, i 6= j be random values in the
base field of the elliptic curve. Compute the following values.

Lj = αG

Rj = αHp(Pj)

cj+1 = H(m,Lj , Rj)

For all i ∈ Z/nZ, i 6= j define Li, Ri, and ci successively
as follows.

Li+1 = si+1G+ ci+1Pi+1

Ri+1 = si+1Hp(Pi+1) + ci+1I

ci+2 = H(m,Li+1, Ri+1)

The last step is closing the ring by “stitching” the two ends
together. Let sj = α − cjxj mod `, where ` is the order of
the elliptic curve. Then

Lj = αG = sjG+ cjxjG = sjG+ cjPj

Rj = αHp(Pj) = sjHp(Pj) + cjI

cj+1 = H(m,Lj , Rj)

The signature consists of (I, c1, s1, · · · , sn).
When checking the signature the verifier computes the

sequence c1, . . . , cn and checks if cn+1 = c1.
Two signatures are linked, i.e., from the same signer, if they

have the same key image I .
In the signature scheme used by Cryptonote [27] based on

FS-signatures [6] the ci are chosen randomly and appended
to the signature. Thus a signature in Cryptonote consists
of (I, c1, · · · , cn, s1, · · · , sn) and is therefore larger than the
scheme described.

Ring signatures enforce untraceability ([21], [27]) of trans-
actions as all identities included in the ring have the same
probability of being the real sender of the transaction.

D. Proofs of Retrievability

A proof of retrievability or proof of storage is a proof of
knowledge which allows a storage provider to cryptographically
prove the possession of a stored file.

The first such mechanism is due to Juels and Kaliski [9].
There, the client inserts so-called sentinel blocks into the
file before uploading it to the storage provider. A proof of

retrievability consists in querying some of the sentinel blocks.
The client can verify if it received the correct sentinels with a
cryptographic key, due to their special construction. The storage
provider cannot delete the file and only store the sentinels, since
without the key the sentinel blocks are indistinguishable from
the file. This scheme is privately verifiable, since a secret key
is needed to verify the proof.

In our construction we need a publicly verifiable proof
of retrievability of small size. Publicly verifiable proofs of
retrievability use an asymmetric key pair, where only the public
key is needed to verify the proof. This allows verification by
any external auditor.

With small size, we mean in particular that the size of the
proof is independent of the size of the file and only depends
on the choice of the security parameter.

Candidates we could use are, e.g., the scheme of Shacham
and Waters [25], [26]. Ateniese et al. [1] showed that a publicly
verifiable proof of retrievability with constant size can be
generated from any homomorphic identification protocol.

In the following we give the intuition behind the definition of
a publicly verifiable proof of retrievability by Ateniese et al. [1].

A publicly verifiable proof of retrievability is a tuple of four
algorithms (Gen,Encode,Prove,Verify) with the following
properties:

1) (pk , sk)← Gen(1k) is a probabilistic algorithm that is
run by the client U to set up the scheme. Its input is
a security parameter k, and the output is a public and
private key pair (pk , sk).

2) (f ′, st)← Encodesk (f) is a probabilistic algorithm that
is run by the client in order to encode the file. It takes
as input the secret key sk , and a file f ∈ Z`

B viewed
as a vector of chunks with fixed size B. It outputs an
encoded file f ′ and state information st . The encoding
can be thought of as splitting the file and signing each
chunk with a homomorphic signature. In particular the
encoding does not provide any form of confidentiality. To
achieve this, a client has to encrypt the file appropriately
before encoding it.

3) π := Prove(pk , f ′, c) is a deterministic algorithm run
by the storage provider that takes as input the public
key pk , an encoded file f ′, and a challenge c ∈ {0, 1}•.
The challenge is expanded by a hash function to a set
of indices of chunks and corresponding coefficients. It
outputs a proof π by combining the chunks and the
homomorphic signatures according to the indices and
coefficients from the challenge.

4) b := Verify(pk , st , c, π) is a deterministic algorithm that
takes as input the public key pk , the state st , a challenge
c ∈ {0, 1}•, and a proof π. It outputs a bit, where
’1’ indicates acceptance and ’0’ indicates rejection by
checking if the aggregated signatures in the proof are a
correct signature for the aggregated chunks. The state st
is used to check if the aggregation was done over the
correct chunks.

For correctness, we require that for all k ∈ N, all (pk , sk)
output by Gen(1k), all files f ∈ Z`

B , all (f ′, st) output by



Encodesk (f), and all c ∈ {0, 1}•, it holds that

Verify (pk , st , c,Prove(pk, f ′, c)) = 1.

In summary a proof of retrievability can be used to check
if a storage provider is really storing a files of a user or just
pretending to do so.

III. SYSTEM DESIGN

The previous chapter supplied us with the fundamental
building blocks for our system. In this section we provide
a short system overview and then go on to explain our system
design more deeply and shed light on our design decisions.

A. Overview

The goal of our system is to provide a distributed storage
system with financial rewards for the participants and strong
privacy properties. Conventional methods of payment are not
privacy sensitive, banks and merchants can access names and
other personal data, so an abstraction from these methods
is needed to ensure private payments. This abstraction is
implemented by the blockchain which contains anonymised
money transfers and storage contracts.

For the following analysis a small number of roles represent-
ing different usage of the system have been identified. Every
participant in the system needs to support some core function-
ality which consists in being able to process cryptocurrency
transactions and transfer money. Beyond the core functionality
the system is designed with the following three advanced roles
in mind.
• User: A user is a node which joins the network to store

and retrieve its files in the system. Users create storage
contracts, a pledge to pay a storage provider money if
the storage provider keeps a file for a certain amount of
time. These storage contracts are broadcast and eventually
included in the blockchain.

• Storage provider: A node joining the network with the
intention to earn money by providing storage space to
users is called a storage provider. Storage providers
are responsible for providing storage space, the main
functionality of the system. Additionally, they publish
proofs of retrievability of files they stored to prove their
compliance with storage contracts.

• Miner: A miner earns rewards for maintaining the system.
Miners validate transactions and storage contracts for
their correctness and aggregates them in blocks in the
blockchain, comparable to miners in Bitcoin.

A node can take on a combination of these advanced roles at
the same time, e.g., it can provide storage, as well as mine
new blocks.

B. Functionality

The roles outlined in the previous section correspond to the
core functionalities of the system: Mining, transferring money,
as well as storing and retrieving files. In the following we will
explain these functionalities more deeply.

1) Mining: Mining is the process of appending valid blocks
to the blockchain, containing new, valid transactions. We did
not see any convincing reason to deviate from the design of
the mining system employed in Bitcoin (cf. [16]). The process
of mining fulfills two important functions: Maintenance of a
valid distributed ledger by validating transactions and the initial
distribution of money in our system.

To achieve this, a miner creates a block using a list of
transactions that are not yet included in a block and a new
one-time address for herself. A nonce is chosen at random
and the block is compared to the difficulty of the previous
block (see Algorithm 1). The process of changing the nonce
and retrying the evaluation is repeated for a pre-specified time,
until it succeeds, or until it is known that someone else has
found a new block.

The difficulty is a value which is included in the blocks. If
the hash of a block is smaller than the difficulty included in the
previous block, the block is considered valid. The difficulty is
used to scale block creation rates, as finding blocks with hashes
smaller than a difficulty d is more computationally demanding
as d decreases. Assuming the hashes are distributed uniformly
random the probability of getting the difficulty right in one try
is roughly d

2b , where b is the bitlength of the hash.
The difficulty is adapted so that, on average, every 10 minutes

a new block is generated. This parameter is taken from Bitcoin
[16] and we did not find a compelling reason to change this. The
pseudo-code of our mining process is given by Algorithm 1.

Algorithm 1 Mining new Blocks
Input: newest block Bn, difficulty , list of transactions ,

maximum number of tries , One-time public key pk of the
miner

Output: next block Bn+1 or fail
1: Bn+1 ← Block(transactions ,pk ,H(Bn))
. Create new block

2: Choose Bn+1.nonce uniformly at random.
3: for 1 . . . tries do
4: if H(Bn+1) ≤ difficulty then
5: return Bn+1

6: end if
7: Bn+1.nonce ← nonce + 1
8: end for
9: return fail

New blocks from mining contain a coinbase transaction.
This is a transaction which is included by a miner in its mined
block. The coinbase transaction grants the miner a financial
reward for mining that block. In contrast to Bitcoin, we use a
one-time address to hide the identity of the miner.

If a dishonest miner includes invalid transactions in a new
block it is rejected by the other miners. Thus, the reward of
the dishonest miner in the form of the coinbase transaction is
not included in the ledger.

2) Money Transfer: To transfer money a user needs to
create and publish a transaction, which consists of a set



{in1, . . . , inm} of inputs and a set {out1, . . . , outn} of
outputs.

An output of a transaction consists of an amount and a
one-time payment address of the recipient. The private key
corresponding to the address is used later to prove ownership
of the output.

Each input ini consists of a set of references to previous
outputs {out

(i)
1 , . . . , out

(i)
`(i)} together with a linkable ring

signature over the outputs {out1, . . . , outn} of the transaction
containing this input. To create this signature the users’ secret
key and the public keys contained in the referenced outputs are
used. This proves that the participant owns at least one of the
referenced outputs {out

(i)
1 , . . . , out

(i)
`(i)}. Further, the outputs of

the transaction {out1, . . . , outn} cannot be modified without
invalidating the signature.

All outputs {out
(i)
1 , . . . , out

(i)
`(i)} referenced in an input ini

need to have the same value, since due to the ring signature
the real transaction output cannot be distinguished from the
other outputs in the anonymity set. If the amounts do not have
the same value the transaction cannot be validated since the
amount could be any of the amounts in the referenced outputs.

To prevent the problem of having no suitable outputs with
the same amount that can be used as an anonymity set, there
is a limited set of valid output values. This is comparable to
banknotes, where there is only a limited set of values, and
combinations of them are used to pay differing sums. The
granularity of the output values has a clear impact on scalability
and privacy. A small set of possible output values, e.g. only
one in an extreme case, provides a large anonymity set, but
increases transaction size, as one needs to use many output
values for sums not equivalent to the provided units. This
can be compared to paying in coins of only one unit. Many
possible output values lead to small, more scalable transactions,
but provide small anonymity sets. A justified choice of this
parameter needs further evaluation and is not yet fixed.

The steps for sending a payment are given by Algorithm 2.
In Line 2 and 3, one-time addresses are created to send money
to the recipient and returning the difference to oneself. Lines 4
and 5 create outputs with their respective values for the payment
and change addresses. In Line 9 and 10 an anonymity set of
size n is retrieved from previous transactions in the blockchain
and the public keys are extracted from those anonymity outputs.
Finally, Line 11 signs the created outputs with a ring signature,
using the keys from the anonymity set and the users’ secret
key.

The previously introduced coinbase transactions act as an
initial anonymity set in the system.

3) File Storage: A user who wants to store a file generates
a fresh public key pair and uses it to encode the file according
to the proof of retrievability. The public key of this pair and
the file identifier, called st, is included in a storage contract,
which is a special kind of transaction, in the blockchain. This
storage contract is publicly verifiable to enable verification by
the miners.

Next, the user searches a storage provider accepting a file of
the requested size for the given storage period c. Both create

Algorithm 2 Money Transfer
Input: Sender secret key skS , recipient public key pkR, value

to transmit, anonymity set size n
Output: a transaction transferring value amount from the

owner S to the recipient R
1: (outputsown, change)← find-own-outputs(value, skS)
2: otaR ← create-ota(pkR)
3: otaS ← create-ota(pkS)
4: targetoutput ← create-output(otaR, value)
5: changeoutput ← create-output(otaS , change)
6: tospend ← {targetoutput , changeoutput}
7: in ← ∅
8: for output in outputsown do
9: anonymityset ← find-outputs(output , n)

10: anonymitysetpks ← retrieve-keys(anonymityset)
11: signature ← sign(tospend , {skS , anonymitysetpks})
12: in ← in ∪ ({output , anonymityset}, signature)
13: end for
14: return (in, tospend)

a contract for an agreed price that can be spend by a one-time
key of the storage provider. Afterwards the user publishes
the contract. The storage provider can see the contract in the
blockchain and accept the file transfer. The operation to store
a file is formalized by Algorithm 3.

To prevent false accepting of contracts without accepting
the file afterwards we require the miner to create a proof of
retrievability directly after the storage process. Otherwise the
storage provider could accept the contract while dropping the
file instantly, locking the money of the user without cost for
themselves. To provide the proof of retrievability, the storage
provider has to accept the file, with the one-time cost of
bandwidth and storage space.

To check that the storage provider keeps the file stored
until the contract expires an additional proof of retrievability
after the expiration of the contract is necessary. If the proof is
not published the storage provider is not able to retrieve the
payment from the storage contract. The challenge for this proof
of retrievability is generated through the hash of the current
block. Since the hash of the current block is not predictable it
is not possible to precompute the proof.

The storage provider publishes both proofs of retrievability
as transactions. Such a transaction includes a reference to the
storage contract in the blockchain and the publicly verifiable
proof. To incentivize miners to include these transactions in
blocks the transactions are equipped with a small fee that can
be spent by the miner of the block.

To reclaim the storage space occupied by proofs of re-
trievability the proofs themselves are not included in the
computation of the hash of the transaction. Thus the proofs can
be removed without changing the hashes of the blocks. It is not
necessary to include the proofs since if they are incorrect the
transaction would not have been added to the blockchain by
miners. Further, the integrity check coming from the inclusion
in the blockchain, does not provide any guarantees against



malicious modification of the proof in transit.

Algorithm 3 Storing a File
Input: User secret key skU , anonymity set size n, file f ,

contract duration c
Output: a storage contract between the user U and an

anonymous storage provider, as well as a file transfer
1: (pk , sk)← Gen(1k)
. Generate a key pair for the proof of retrievability

2: (f ′, st)← Encodesk (f)
. Encode the file for the proof of retrievability

3: (p, pkS)← find-SP(size(f ′), c)
. Find a storage provider and receive a price p and its
public key pkS , given the storage period and the size of
the file

4: tx ← money-transfer(skU , pkS , p, n)
. See Algorithm 2

5: publish(pk , st , ref , c, tx )
6: transfer(f ′)
. Transfer the encoded file to the storage provider

The one-time address ref is needed to refund the payment
invested by the user if the contract is broken by the storage
provider. To spend the refund, the user proves the breaking
of the contract by referencing the broken storage contract
and specifying, if the proof of retrievability is missing at the
beginning a or the end c of the contract. The specification
by the client is done to reduce validation cost, by halfing
the blocks that need to be checked. We assume a period of
goodwill, wherin a storage provider needs to provide a proof
of retrievability, of length ∆. The contract is stored in block
Bi and contains the sotrage duration c. We denote the start of
the period, where the first proof of retrievability should have
happened with a, this should be shortly after the contact, but
not instantly, as the file transfer might take some time. This
results in the period of blocks Bi+a, . . . ,Bi+(a+∆) for the
first proof of retrievability. The start of the period, where the
second and last proof of retrievability should have happened, is
denoted by c, as it is defined by the contract length, resulting in
the blocks Bi+c, . . . ,Bi+(c+∆). The verifier checks, depending
on the point in time specified by the user, a for example, the
blocks Bi+a through Bi+(a+∆) for a proof of retrievability
referencing the contract. If the blocks do not contain a proof,
the contract has been broken and the user addressed by ref
is allowed to use the funds locked in the contract in a new
transaction.

To increase safety of the storage, the file can be split by the
client in multiple smaller chunks which are stored at multiple
storage provider. Additionally an erasure code may be applied.
This allows the retrieval of a subset of files to reconstruct the
original file.

To increase privacy, a file can be encrypted with a securely
guarded encryption key prior to upload. This is not enforced
by our protocol to allow the storage of publicly accessible files,
though encryption will be the default option in the system for
privacy reasons.

4) File Retrieval: While storage contracts address the cost
of storage, bandwidth is not free either. Hence, users need to
pay for each file retrieval.

It is important to note that the order of payment and file
transfer opens the gate to different forms of cheating. If the user
pays first the storage provider has no incentive to continue by
transferring the file. However, if the storage provider transfers
the file first the problem is not solved either. In this case the
user loses its incentive to pay the storage provider since it
already received its data.

To deter both parties from cheating we make use of security
deposits, as in KopperCoin [11]. The high-level idea is to bring
both parties into a situation, where they have a game-theoretic
disadvantage if they do not behave honestly, i.e., they lose their
security deposits.

In particular, the system utilizes a payment transaction for
each file retrieval, called mutual assured destruction (MAD)
transaction. A MAD-transactions consists of a multi signature
transaction. This is a transaction that needs to be signed by
multiple parties in order to be spent.

To perform a MAD-transaction, a user U and storage provider
P provide respective security deposits DU , DP and the user
additionally provides a payment p for the data. These funds
are combined as inputs in a multi signature transaction which
both parties, U and P need to sign to spent them. In the next
step the storage provider needs to transmit the file to the user.
After receiving the data the user checks the integrity of the
file. If it is correct both sign the payout transaction, so the user
receives its deposit DU and the storage provider receives its
deposit and the payment DP + p.

If the user or the storage provider cheats by not paying or
not transferring the file, the respective other party will refuse to
sign the second transaction and both parties lose their security
deposits.

A graphical depiction of a MAD-transaction is provided by
Figure 2.

P
DP

''

P

DP+DU+p

P,U
//

DP+p

77

DU

''U

DU+p

77

U
Figure 2. A MAD-transaction between a user U and a storage provider P ,
including a payment p and deposits DU and DP .

A full review of the lifecycle of a contract is given by
Figure 3.

IV. SECURITY AND PRIVACY DISCUSSION

In this section we discuss the privacy and security properties
of our system. Since the specification of the network is ongoing
work, we focus on privacy and security properties of the upper
layers. At some parts we require certain properties of the
network layer to achieve our privacy goals. We will indicate
this where necessary.



Proof, Fee Proof, Fee

File and
payment

MAD and
payment File

Further file retrievals Contract endFile retrieval using MAD transactionContract start and file transmission

Figure 3. Visualization of the contract lifecycle and involved payments over time. Starting on the left, a user commits to a payment to the storage provider and
transmits its file. The storage provider provides a proof of retrievability costing a small fee. This is repeated at the end of the contract. To retrieve the file a
MAD transaction is initiated and a payment is made from the user to the storage provider.

A. Privacy Properties

In the following our attacker is a passive observer with
access to all transactions in the blockchain. We organized this
section according to the different entities in the system.

In a nutshell, we provide anonymity of senders and receivers
in money transfers. Only the amount in the transaction is public.
Regarding storage, we hide the user, the storage provider, as
well as the file. Of course, the identity of a file is linkable
with its corresponding proofs of retrievability, but the content
of the file is never revealed to a passive observer. We assume
that the client application takes care of hiding the content of
the file towards a storage provider, e.g., by encrypting it.

Our system achieves that even two storage contracts with
the same user, storage provider and file cannot be linked. Only
the amount is known.

1) Sender Anonymity: With sender anonymity or untrace-
ability ([21], [27]) we describe the property that the sender of
a transaction is hidden.

Our scheme achieves this on the level of the blockchain, since
linkable ring signatures are used when referencing previous
transaction outputs. Thus, all identities included in the ring have
the same probability of being the sender of the transaction [27].
In practice one may choose a ring size between two and five.
Since the anonymity of a sender depends on the anonymity
of other senders in the ring, care must be taken to disallow
rings with only one member. Otherwise an attacker controlling
a large part of the signatures could set a chain reaction in
motion which can deanonymize a large part of the senders of
past transactions [20]. Note that the signatures are nevertheless
one-time and thus anonymity of users may not necessarily be
violated.

In case of a double-spend both transactions become linked
and the second is discarded by the miners. The identity of
the sender is not revealed thereby, if the same set of keys is
used. If the sender double-spends with two disjoint sets of
other public keys in the rings, an observer learns the one-time
key which is used in the double-spend. This is a one-time key
and even though sender anonymity is broken, the long-term
identity of the sender is not revealed.

To provide anonymity of senders of transactions we require
that the network hides the senders of broadcast messages.
Clearly, linking a sender of a transaction to the participant
broadcasting the transaction in the network violates our privacy

requirements.
2) Receiver Anonymity: The notion of receiver anonymity

means that the identity of the receiver of a transaction is hidden.
Our scheme provides unlinkable transactions, i.e., an observer
cannot decide if any two transactions were sent to the same
user. We accomplish this through the use of one-time addresses.
If two amounts are sent to the same receiver the senders derive
two different unlinkable one-time payment addresses from the
long-time key of the receiver [19], [27]. Only the receiver is
able to check if both transactions belong to him, and recover
the private key which is needed to spend the transactions.

3) User Anonymity: The anonymity of the storage user
U could potentially be violated through his actions on the
blockchain, as well as through the file handling of the system.

When a user wants to store a file, a storage contract is issued
on the blockchain. This contract includes her payment, i.e.,
references to sets of previous transactions outputs, a public
key which is used for the proof of retrievability, as well as
the address of the storage provider P , and details under which
conditions P receives the payment.

As explained above in Section IV-A1, the public key of
the sender of the payment, in this case the user U , is not
revealed in a storage contract, because of the use of linkable
ring signatures.

The public key used for the proof of retrievability is different
from the other keys of the user and unique per file. It is needed
to enable public verifiability of the proof of retrievability. The
corresponding private key is needed only once to run the
algorithm Encode of the proof of retrievability prior to the
upload and can then be deleted. Since the key pair is unique
per file it cannot be used to identify the user or link different
files of the same user.

Unlinkability between the user and his files is a consequence
of the anonymity of the user in the storage contract due to the
linkable ring signatures. Thus if a user uploads multiple files,
an observer cannot decide if they originated from the same
user.

Though note that if a user creates multiple storage contracts
with very unique conditions on the storage provider, these
contracts may be linked as corresponding to the same user.

Since a MAD transaction is just a multi signature transaction
and does not contain any references to the file, the privacy
of the user is protected through the same mechanisms as in a
normal transfer of funds (see Sections IV-A1 and IV-A2).



To provide our strong privacy guarantees on the network
layer, we require a mechanism to hide the sender of messages
when uploading the file. When the user downloads the file
the network needs to hide the receiver of messages. If the
network additionally provides unlinkability of message senders
and receivers users and storage providers are unlinkable.

4) Storage Provider Anonymity: As with user anonymity, we
need to check the storage contracts and the MAD transactions
to check the anonymity of the storage provider. Regarding the
published proofs of retrievability it is easy to see that these
do not identify the storage provider, since they only contain a
reference to the storage contract in the blockchain.

In a storage contract the identity of the sender is not revealed,
since a one-time payment address is used. Our system even
achieves unlinkability of two storage contracts with the same
storage provider.

In a MAD transaction the anonymity of the storage provider
is also preserved, again since one-time addresses are used and
the security deposits are done with ring signatures.

Again we require the network to provide unlinkability of
the communicating parties.

5) File Anonymity: With file anonymity we mean the
identifiability of the file throughout its life-cycle.

From the storage contract an observer can learn an identifier
for the file, which is later used in the proofs of retrievability.
This is the only time this identifier is used in the blockchain.

In particular an attacker cannot link a storage contract
concerning a specific file and a corresponding MAD transaction,
since a MAD transaction contains no reference to the file.
Hence, an observer cannot learn how often a specific file is
requested in the network.

A passive attacker can neither learn the identity of a user,
nor of a storage provider of a specific file, since the identities
in the storage contract are hidden. The attacker can only learn
the price for the storage contract on which the participants
agreed.

The identifiability of a file in a network when a download
request occurs depends heavily on the concrete network em-
ployed. If the packets sent in the network are kept confidential
and sender and receiver are unlinkable, a passive attacker is
not able to trace the file. For a non-global passive attacker a
mixing system like TOR [4] could be used.

B. Security discussion

This section discusses the security properties of our scheme.
We discuss only attackers specific to our scenario and will
omit general issues concerning blockchain architectures, such
as the necessary conditions for double-spending or assumptions
on the attackers to obtain a secure consensus algorithm. For
a security discussion of these general problems we refer the
reader to previous literature on the subject (see, e.g., [5], [7],
[8], [10], [12], [17]).

1) Denial of Service Attack: The most simple attack is a
denial of service attack.

Concerning transactions, this means to repeatedly transfer
money to other addresses of the same participant. Like in

Bitcoin, the attacker needs to pay transaction fees to get its
transactions included in the blockchain. This means that such
an attack has a financial cost associated with it which provides
an upper limit for the attacking capability of the attacker.

Concerning storage contracts the same reasoning holds.
An attacker can also try to include many proofs of retriev-

ability in the blockchain, thereby increasing the size of the
blockchain. This attack is prevented by the miners checking
the proofs of retrievability and only including them in the
blockchain if these are valid and required to fulfil a storage
contract.

2) Malicious Storage Providers: Let us take a look at the
potential actions of a malicious storage provider.

A malicious storage provider can offer to store a file of the
user, but instead delete it. This way the data of the user is lost.

When modifying or deleting the data of the user before the
storage contract has expired the storage provider is unable to
compute a proof of retrievability since the challenge is not
known in advance. This way, a malicious storage provider loses
a potential reward from the storage contract, as well as from
potential MAD transactions.

A solution against the loss of her data on the side of the user
is to split the file in multiple chunks and apply an erasure code,
before uploading it to multiple storage providers, since then
the data can be recovered if only a sufficiently small fraction
of storage providers is malicious. Though, currently there is
no mechanism in our scheme to ensure that the chunks will
be stored at different storage providers.

Concluding, a malicious storage provider misses a financial
profit by cheating and thus will not cheat if she is rational.

3) Malicious Users: On the side of the user there is few
potential for malicious actions, since the user always has to
pay for using storage resources of the network.

One idea for a user to cheat is by blackmailing the storage
provider in the MAD transaction. When requesting a file a user
U can refuse to sign the second multi signature transaction.
Instead U offers to sign a different multi signature transaction
granting only a small non-negative amount ε to the storage
provider P and the remaining amount DP +DU + p− ε to U .
If the storage provider does not sign this transaction, she loses
her deposit DP . On the other hand, if she signs it, she only
loses DP − ε, which is less. Thus, a rational storage provider
will agree to the blackmailing transaction.

On the other hand the risk of U when blackmailing the
storage provider in such a way is losing her deposits DU .

In our system this problem of blackmailing cannot occur
since in our system the storage provider P , and not the user,
sends the second multi signature transaction. Thus, the user
can only accept or refuse to sign, in which case she loses
her deposit. She does not have the opportunity to send a
blackmailing transaction to the storage provider.

V. CONCLUSION

This paper presented a design for a privacy-preserving
distributed storage system where the participants have financial
incentives to contribute. It is based on a blockchain architecture



to handle funds and storage contracts. Storage providers can
prove compliance with storage contracts by publishing proofs
of retrievability, i.e., cryptographic proofs which show that
they indeed provided the storage.

We have implemented large parts of the payment mechanics
to test their feasibility, and are currently working on the
network, as well as the file mechanics.

Privacy and security are often perceived as conflicting
requirements, but as we have shown in our design, they are not.
We did not have to achieve a trade-off between privacy and
security, but rather between security and privacy on the one
hand and usability and scalability on the other hand. Privacy
and security can well be integrated into a coherent design
without compromising on functionality.

REFERENCES

[1] G. Ateniese, S. Kamara, and J. Katz. Proofs of storage from homomorphic
identification protocols. In Advances in Cryptology–ASIACRYPT 2009,
pages 319–333. Springer, 2009.

[2] K. Bennett, T. Stef, C. Grothoff, T. Horozov, and I. Patrascu. The gnet
whitepaper. Technical report, Purdue University, 06/2002 2002.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies, pages 46–66. Springer, 2001.

[4] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. Technical report, DTIC Document, 2004.

[5] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In Financial Cryptography and Data Security, pages 436–
454. Springer, 2014.

[6] E. Fujisaki and K. Suzuki. Traceable ring signature. In Public Key
Cryptography–PKC 2007, pages 181–200. Springer, 2007.

[7] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT
2015, pages 281–310. Springer, 2015.

[8] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks
on bitcoin’s peer-to-peer network. Cryptology ePrint Archive, Report
2015/263, 2015.

[9] A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large
files. In Proceedings of the 14th ACM conference on Computer and
communications security, CCS ’07, pages 584–597, New York, NY, USA,
2007. ACM.

[10] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun.
Misbehavior in Bitcoin: A Study of Double-Spending and Accountability.
ACM Trans. Inf. Syst. Secur., 18(1):2:1–2:32, May 2015. http://doi.acm.
org/10.1145/2732196.

[11] H. Kopp, C. Bösch, and F. Kargl. Koppercoin – a distributed file storage
with financial incentives. In Proceedings of the 12th International
Conference on Information Security Practice and Experience, ISPEC
2016, pages 79–93. Springer, 2016.

[12] J. A. Kroll, I. C. Davey, and E. W. Felten. The economics of bitcoin
mining, or bitcoin in the presence of adversaries. In Proceedings of
WEIS, volume 2013, 2013.

[13] J. K. Liu, V. K. Wei, and D. S. Wong. Linkable spontaneous anonymous
group signature for ad hoc groups. In Information Security and privacy,
ACISP 2004, pages 325–335. Springer, 2004.

[14] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage. A fistful of bitcoins: characterizing payments
among men with no names. In Proceedings of the 2013 conference on
Internet measurement conference, pages 127–140. ACM, 2013.

[15] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing
Bitcoin Work for Data Preservation. In IEEE Symposium on Security
and Privacy, 2014, pages 475–490. IEEE, 2014. http://cs.umd.edu/
%7Eamiller/permacoin.pdf.

[16] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009.
https://bitcoin.org/bitcoin.pdf.

[17] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. Cryptology ePrint
Archive, Report 2015/796, 2015.

[18] S. Noether. Ring signature confidential transactions for monero.
Cryptology ePrint Archive, Report 2015/1098, 2015.

[19] S. Noether and S. Noether. Monero is not that mysterious. Technical
report, 2014. https://lab.getmonero.org/pubs/MRL-0003.pdf.

[20] S. Noether, S. Noether, and A. Mackenzie. A note on chain reactions
in traceability in cryptonote 2.0. Technical report, 2014. https://lab.
getmonero.org/pubs/MRL-0001.pdf.

[21] T. Okamoto and K. Ohta. Universal electronic cash. In Proceedings of
the 11th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’91, pages 324–337, London, UK, 1992. Springer-
Verlag. http://dl.acm.org/citation.cfm?id=646756.705374.

[22] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In
Advances in Cryptology—ASIACRYPT 2001, pages 552–565. Springer,
2001. http://dx.doi.org/10.1007/3-540-45682-1 32.

[23] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction
graph. In Financial Cryptography and Data Security, pages 6–24.
Springer, 2013.

[24] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai. Retricoin: Bitcoin based on
compact proofs of retrievability. In Proceedings of the 17th International
Conference on Distributed Computing and Networking, ICDCN ’16,
pages 14:1–14:10, New York, USA, 2016. ACM.

[25] H. Shacham and B. Waters. Compact proofs of retrievability. In Advances
in Cryptology–ASIACRYPT 2008, pages 90–107. Springer, 2008.

[26] H. Shacham and B. Waters. Compact proofs of retrievability. Journal of
cryptology, 26(3):442–483, 2013.

[27] N. van Saberhagen. Cryptonote v 2.0. 2013. https://cryptonote.org/
whitepaper.pdf.

http://doi.acm.org/10.1145/2732196
http://doi.acm.org/10.1145/2732196
http://cs.umd.edu/%7Eamiller/permacoin.pdf
http://cs.umd.edu/%7Eamiller/permacoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lab.getmonero.org/pubs/MRL-0003.pdf
https://lab.getmonero.org/pubs/MRL-0001.pdf
https://lab.getmonero.org/pubs/MRL-0001.pdf
http://dl.acm.org/citation.cfm?id=646756.705374
http://dx.doi.org/10.1007/3-540-45682-1_32
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf

	Introduction
	Building Blocks
	Bitcoin and the Blockchain
	One-time Payment Addresses
	Linkable Ring signatures
	Proofs of Retrievability

	System Design
	Overview
	Functionality
	Mining
	Money Transfer
	File Storage
	File Retrieval


	Security and Privacy Discussion
	Privacy Properties
	Sender Anonymity
	Receiver Anonymity
	User Anonymity
	Storage Provider Anonymity
	File Anonymity

	Security discussion
	Denial of Service Attack
	Malicious Storage Providers
	Malicious Users


	Conclusion
	References

