
RESEARCH ARTICLE

Unobtrusive monitoring: Statistical

dissemination latency estimation in Bitcoin’s

peer-to-peer network

David MödingerID
1*, Jan-Hendrik Lorenz2, Rens W. van der Heijden1, Franz J. HauckID

1

1 Institute of Distributed Systems, Ulm University, Ulm, Germany, 2 Institute of Theoretical Computer

Science, Ulm University, Ulm, Germany

* david.moedinger@uni-ulm.de

Abstract

The cryptocurrency system Bitcoin uses a peer-to-peer network to distribute new transac-

tions to all participants. For risk estimation and usability aspects of Bitcoin applications, it is

necessary to know the time required to disseminate a transaction within the network. Unfor-

tunately, this time is not immediately obvious and hard to acquire. Measuring the dissemina-

tion latency requires many connections into the Bitcoin network, wasting network resources.

Some third parties operate that way and publish large scale measurements. Relying on

these measurements introduces a dependency and requires additional trust. This work

describes how to unobtrusively acquire reliable estimates of the dissemination latencies for

transactions without involving a third party. The dissemination latency is modelled with a log-

normal distribution, and we estimate their parameters using a Bayesian model that can be

updated dynamically. Our approach provides reliable estimates even when using only eight

connections, the minimum connection number used by the default Bitcoin client. We provide

an implementation of our approach as well as datasets for modelling and evaluation. Our

approach, while slightly underestimating the latency distribution, is largely congruent with

observed dissemination latencies.

1 Introduction

The increasing popularity of Bitcoin [1] and the underlying blockchain have led to many appli-

cations and use cases relying on this technology. With a blockchain, an application relies on a

distributed ledger, shared between participants, consisting of transactions along with a consen-

sus protocol to decide which transactions are valid and put into the ledger. Many blockchain

applications rely on low latencies, such as an automated teller machine (ATM) [2], file storages

[3], and in general, marketplaces [4]. For such low-latency applications, knowledge about the

expected time required to disseminate a transaction through most parts of the network has

many uses. This includes sensible user feedback, the computation of expected processing time

for processes involving one or multiple transactions, or to gauge double-spend risk, i.e.,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mödinger D, Lorenz J-H, van der Heijden

RW, Hauck FJ (2020) Unobtrusive monitoring:

Statistical dissemination latency estimation in

Bitcoin’s peer-to-peer network. PLoS ONE 15(12):

e0243475. https://doi.org/10.1371/journal.

pone.0243475

Editor: He Debiao, Wuhan University, CHINA

Received: August 5, 2020

Accepted: November 21, 2020

Published: December 10, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0243475

Copyright: © 2020 Mödinger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All collected data files

are available via zenodo and can be found via the

url https://zenodo.org/record/2547396 (also

submitted as data validation link). It is also

available as http://doi.org/10.5281/zenodo.

https://orcid.org/0000-0002-5917-2419
https://orcid.org/0000-0002-7480-9617
https://doi.org/10.1371/journal.pone.0243475
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243475&domain=pdf&date_stamp=2020-12-10
https://doi.org/10.1371/journal.pone.0243475
https://doi.org/10.1371/journal.pone.0243475
https://doi.org/10.1371/journal.pone.0243475
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/2547396
http://doi.org/10.5281/zenodo.2547396

estimate how long it would take to notice a double-spend transaction in zero-confirmation

transactions.

Live monitoring data on the dissemination times in Bitcoin is available by third parties in

large scale measurements, e.g., by bitnodes (see https://github.com/ayeowch/bitnodes) and by

researchers [5, 6]. While an interested user could use the data produced by these third parties,

this would introduce a possibly unwanted dependency on them. Users would also need to

trust those parties and their provided data to be correct, reliable and up to date. Participants

could also apply measurement techniques themselves, but these require a large amount of

resources, as connections to the majority of network participants are needed. This approach is

thus infeasible for typical network participants. Last but not least, this approach is rather con-

spicuous and does not scale to a large number of users.

1.1 Contribution

We enable live measurements of transaction-dissemination latencies in Bitcoin in an unobtru-

sive fashion that is accessible to typical network participants, using only eight connections,

which is the minimum number of connections in Bitcoin. We achieve this by contributing:

• A model of dissemination-latency behaviour of the Bitcoin network using a lognormal distri-

bution including discussions on alternative models.

• An approach to adapt the parameters of such a lognormal distribution to new observations,

e.g. changes in the network, with an unknown shift parameter.

• A tool estimating the parameters of the modelled dissemination-latency distribution using

only eight connections to the network.

• Datasets over various timeframes and places, to model Bitcoin-network behaviour as well as

to evaluate such models and tools.

While the implementation relies on behaviour specific to Bitcoin, the general approach is

not as limited. The isolation and estimation of dissemination latencies can be applied to vari-

ous broadcast networks and mechanics, e.g., peer-to-peer queries.

1.2 Roadmap

The structure of this paper is as follows: Section 2 discusses existing network-latency measure-

ment strategies. In Section 3, we introduce the relevant aspects of Bitcoin and its network

behaviour. In Section 4 we provide an overview of our network monitoring solution, which

uses only a few connections. Section 5 to Section 8 focus on aspects of the network monitoring

and its evaluation. Section 5 details the data collection and the resulting data sets. Section 6

focuses on the interpretation and modelling of the collected data. In Section 7, we describe the

process to deduce similar results with much fewer connections by a Bayesian mechanism.

Lastly, in Section 8 we show the experimental evaluation results of the Bayesian mechanism

based on the collected data. An overview of the main steps is shown in Fig 1.

2 Related work

Monitoring network properties, such as latency, is widely applied in a multitude of different

network types. In this section, we discuss different approaches to latency measurements in

similar network environments.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 2 / 21

2547396. Processed data examples and scripts

used in the creation of this manuscript are available

on github: https://github.com/vs-uulm/CoinView

the same is true for the software: https://github.

com/vs-uulm/btcmon. The sofware is available

under an open source license, i.e., can be archived

or used by third parties.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/ayeowch/bitnodes
https://doi.org/10.1371/journal.pone.0243475
http://doi.org/10.5281/zenodo.2547396
https://github.com/vs-uulm/CoinView
https://github.com/vs-uulm/btcmon
https://github.com/vs-uulm/btcmon

2.1 Internet protocol latency measurements

Measurements in general Internet Protocol (IP) networks are a common denominator of net-

work measurements. Although, most IP-level measurements target single-path latencies

instead of dissemination latencies.

Yu et al. [7], for example, use an active measurement approach in Software-Defined Net-

working. They instruct the network devices to route specific control packets through the moni-

tored path. Then they send timestamped packets through the established route. The measured

time difference is used to estimate the latency of the targeted path. The estimation is required

as there is noise introduced by fluctuations in network behaviour and latency introduced

through travelling from and to the in and out routers of the target path. To compute the

latency estimates from their measured timestamps they use an estimation distribution, an

approach applied on a larger scale in Section 7. The active approach they use still produces

strain on a large network and does not scale to the distributed approach required for measur-

ing a broadcast. Breitbart et al. [8] and many others use a similar approach.

Others [9, 10] use passive monitoring, i.e. collecting information on participants and net-

work devices. This requires sharing of collected information to compute a global view on the

information, which poses some challenges in a distributed fashion. While this creates reliable

data, as long as participants are honest, it also creates additional traffic for information sharing.

Shaer et al. [10] use a passive approach to measure latencies and other network properties in

IP-multicast environments. They build on the separation of data collection and processing for

high-speed analytics. The approaches also require control, or at least dependency and trust,

over many network participants to produce reliable results. We attempt to minimise these, due

to the negative effects of dependencies and the trust model of Bitcoin. To reduce network over-

head, our approach is to infer the desired information from regular traffic instead of actively

sharing of measurements.

2.2 Peer-to-peer latencies

Bitcoin is built on top of a peer-to-peer network, hence measuring techniques used for general

peer-to-peer networks might be applicable. Classical peer-to-peer networks are built on the

idea of sharing and, more importantly, finding information. They are not built to spread infor-

mation to all participants, as Bitcoin does with transactions. Instead, they are built to locate

information in a distributed fashion. Locating of information is accomplished through search

queries, implemented by flooding techniques or random walks. Therefore, most measure-

ments of classical peer-to-peer networks focus on hop count and search depth of flooding que-

ries instead of dissemination latency [11, 12]. Others, such as Saroiu et al. [13], focused on peer

Fig 1. Overview of the aspects of this paper: Data collection, modelling and monitoring.

https://doi.org/10.1371/journal.pone.0243475.g001

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 3 / 21

https://doi.org/10.1371/journal.pone.0243475.g001
https://doi.org/10.1371/journal.pone.0243475

properties. They only measure pairwise roundtrip latencies between a measurement station

and each peer, which are not indicative of in-network latencies over multiple hops and many

paths.

Butnaru et al. [14] and Almeida et al. [15] proposed testing and benchmarking frameworks

for peer-to-peer networks. These frameworks actively create queries to the network and mea-

sure response times. As some of the classical networks, e. g. Gnutella, implement search que-

ries by flooding the network, measurements of the response time for queries is collected by

these frameworks. Query response times correlate to dissemination times for rare lookups, but

it is imprecise and not considered in these publications.

Active probes are not suitable for the use case of monitoring Bitcoin transaction latencies,

as valid transactions can create high costs per probe. They also would require a large number

of connections, similar to the fully passive approaches used by third parties in Bitcoin as men-

tioned earlier.

2.3 Bitcoin monitoring

The Bitcoin network has been monitored for various goals. Certain research and private proj-

ects [5, 6, 16–18] measure and discuss network properties of Bitcoin. While they actively build

connections to participants, they measure the desired traits in a fully passive way: the monitor-

ing software crawls the network for possible clients using the gossip protocol of the network.

Then it connects to all found addresses and collects various statistics provided through the net-

work protocol, including user agent, protocol version numbers and more. The software keeps

the connection open and logs all received messages with their respective timestamps. This

approach allows them to perform accurate measurements through the network. As they track

actual traffic instead of probe and control messages, the results are reliable representations of

the actual behaviour of nodes.

We apply this approach in Section 6 to collect comparable datasets. We deviate from this

for our live monitoring by an abstraction of the desired metric, i.e., latency, and severely reduc-

ing the required connections for reliable results.

3 Background

This section gives a brief overview of Bitcoin, a blockchain-based cryptocurrency, and the sta-

tistical information required for the core results of this paper. As this paper focuses on network

behaviour, we restrict the description of blockchains to a high-level understanding.

3.1 Bitcoin blockchain

Bitcoin [1] is the first implementation of a so-called blockchain: A distributed data structure of

time-stamped transactions between an indeterminate amount of users. To identify these users

of the blockchain protocol, Bitcoin uses asymmetric cryptographic keys. Identities are denoted

by public keys and possession of the secret key is proven by cryptographic signatures.

The core elements of a blockchain are blocks and transactions. A transaction is an asset

transfer. It can have multiple inputs and outputs. An input is a proof of ownership of a previous

output, usually a signature proofing the possession of the key used for the output. Inputs can

only be used once for a transaction, if two transactions exist referencing the same output, only

one can be valid. To decide which transactions are valid, the blocks and mining process is used.

A block is an accumulation of transactions, which also contains a hash of the previous

block, forming a chain through these references. The blocks represent the consensus of the sys-

tem on which transactions are valid. To form a distributed consensus, a mechanism called

proof of work is used in Bitcoin and many other blockchains [19]. This proof of work forces

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 4 / 21

https://doi.org/10.1371/journal.pone.0243475

the participants that want to build a block to spend an amount of resources proportional to the

available resources in the system. The required resources are usually proportional so that the

average rate of block creation is constant. While competing blocks can be created, participants

will continue the longest chain, forming a probabilistic consensus on all valid transactions.

In Bitcoin and other permissionless blockchains, everyone can participate in the system.

New blocks and transactions need to be transmitted to all participants. As, in principle, every-

one can participate, the network protocol is especially important.

3.2 Bitcoin network

The underlying network of Bitcoin and, in general, of permissionless blockchains is an

unstructured peer-to-peer network. The reference implementation of a Bitcoin client requires

a participant to create at least eight connections. Blocks and transactions are broadcast

throughout the network [20] by forwarding them through all existing connections. Connected

nodes in turn forward to their neighbours.

In principle, this is a flood and prune broadcast: New transactions and blocks are advertised

through an inventory message. An inventory message contains identifiers for these new trans-

actions and blocks. A client can then request the actual block or transaction, with a so-called

getdata message.

To hide the topology of Bitcoin and hide the originator of a block or transaction, the refer-

ence implementation does not instantly propagate new information. The Bitcoin-core software

creates exponentially distributed values, which are used as waiting times until the next inven-

tory message is sent. See:

1. net_processing.cpp:4140 and

2. net.cpp:2852 of the Bitcoin sources on GitHub, on commit

ea595d39f7e782f53cd9403260c6c1d759d4a61a.

This results in a Poisson point process with an average rate dependent on the expected

value of the exponential distribution.

To calculate the waiting times, with an expected average delay of a ms and a minimum of

0.5, Bitcoin uses the formula:

lnð1 �
randð0; 248Þ

248
Þð� 106Þaþ 0:5: ð1Þ

The recent version 0.20.0 uses a value resulting in an average of 5 seconds as default. To

prevent unacceptable long waiting times, Bitcoin caps the generated values at 7 times the average,

i.e., 35 seconds. According to the sources, the privacy consideration of outbound connections

are different from inbound connections and outbound connections have therefore half the delay.

There are alternative implementations of Bitcoin (Cf. Bitnodes list of user agents) which do

not have to follow this implementation. Further, there are proposals for different privacy

approaches [21, 22] which are not implemented yet and are therefore not considered during

this paper. If they were to be implemented, the strategies of this paper would need adaption

and reevaluation.

3.3 Time measurements

Given some source node s and some target node t and a measurement node m connected to

both. The measurement node receives timestamps Ts, Tt by node s and t. The difference Tt −
Ts≕Ms,t is a measurement of some property of the network connecting these two nodes.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 5 / 21

https://github.com/bitcoin/bitcoin/blob/ea595d39f7e782f53cd9403260c6c1d759d4a61a/src/net_processing.cpp#L4140
https://github.com/bitcoin/bitcoin/blob/ea595d39f7e782f53cd9403260c6c1d759d4a61a/src/net.cpp#L2852
https://github.com/bitcoin/bitcoin
https://doi.org/10.1371/journal.pone.0243475

First, let us denounce the latency of n successive connections as the term ℓ(n). Secondly, the

random variable modelling the slowdown of the connection between nodes i, j shall be named

Xi,j. Ms,t is then the minimum time taken through the network from s to t through all possible

paths between them. Considering the measuring connection slowdown and latency, the result

is:

Ms;t ¼ minðpaths;tÞ þ Xt;m � Xs;m þ �ð2; ‘Þ: ð2Þ

To describe a possible path of length n between nodes, let us denote pathn. Here, X and Xk

denote the exponentially distributed random variables between two nodes within the Bitcoin

network, without the addition of 0.5. Xk is either Exponentially distributed with Exp(λ) or

Exp l

2

� �
:

path1 ¼
1

2
þ X þ ‘ð1Þ ð3Þ

pathn ¼
Xn

k¼1

1

2
þ Xk þ ‘ð1Þ

� �

¼
n
2
þ
Xn

k¼1

Xk þ ‘ðnÞ ð4Þ

¼
n
2
þ
Xn� m

k¼1

Xk|{z}
�ExpðlÞ

þ
Xm

k¼1

Xk|{z}
�Exp l

2ð Þ

þ ‘ðnÞ
ð5Þ

¼
n
2
þ

Xn� m

k¼1

Xk

|fflffl{zfflffl}
�Erlangðn� m;lÞ

þ
Xm

k¼1

Xk

|fflffl{zfflffl}
�Erlang m;l

2ð Þ

þ ‘ðnÞ
ð6Þ

So a measurement Ms,t is a sum of two Erlang, or Gamma, distributions, with some noise

linear in the number of participants. Further simplifications of the description of a single path

will complicate the notation, as the sum of two Erlang distributions with different scale has no

named or well-researched form. Therefore, there is no well-understood model of a minimum

of such a sum either. Lastly, with an expected value of 5 seconds, the slowdowns and the n
2

term

dominate all usual models for latencies of connections and therefore ℓ(n + 2).

Given these circumstances, we are interested in the expected time required to reach a given

fraction of the network.

3.4 Lognormal distribution

We use the lognormal distribution to model behaviour in a later part of this paper, for the dis-

cussion on why we use this model, see Section 6. For an in-depth discussion of other distribu-

tions used in this paper, we refer to [23].

The lognormal distribution is strongly related to the normal distribution. The normal dis-

tribution, also known as Gaussian distribution, is well known for its bell-shaped probability

density function. The distribution is defined using two parameters: μ, the mean (and median

in case of the normal distribution), and σ2, the variance.

The lognormal distribution is a transformation of the normal distribution: The logarithm

of the random variable is normally distributed, e.g., given a normally distributed variable X,

then eX follows a lognormal distribution. The parameters of a lognormal distribution are

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 6 / 21

https://doi.org/10.1371/journal.pone.0243475

usually given as μ and σ of the underlying normal distribution. Sometimes a third parameter is

used, γ which represents a shift of the distribution. Parameter estimation of such a shifted log-

normal distribution is more complex [24] and will be addressed in Section 7.

The distribution parameters can be used to calculate percentiles. These represent how

many of the events modelled by the distribution already happened. The cumulative distribu-

tion function could be used to calculate the desired percentiles.

For the normal and lognormal distribution, the cumulative distribution functions are not

analytically solvable but can be efficiently approximated. A simple way to approximate the

results by [25], with an error |�(x)|� 5 × 10−4, is:

cdflnNðxÞ ¼
1

2
1þ erf

lnðxÞ � m
s

� �� �

ð7Þ

� 1 �
1

2� ð1þ a1sþ a2s2 þ a3s3 þ a4s4Þ
4
; ð8Þ

s ¼
lnðxÞ � m

s
: ð9Þ

Where the values for αi are constants given by α1 = −0.278393, α2 = 0.230398, α3 = 0.000972

and α4 = 0.078108.

Methods with higher accuracy, i.e., lower error, are available. Let p 2 [0, 1], the percentile

100p is then calculated by solving cdflnN(x) = p for x. This requires either inverting the cumula-

tive distribution function or a numerical search, which can be computed efficiently. Comput-

ing the percentile p yields the expected time to reach the fraction p of the network.

4 Unobtrusive live monitoring

We introduce a tool (available online at https://github.com/vs-uulm/btcmon) to monitor

expected transaction dissemination times in the Bitcoin network. The tool requires only eight

connections to produce reliable estimates of the given network behaviour.

4.1 Functionality

Our tool produces an estimate of lognormal parameters μ and σ. This distribution represents

the current dissemination latencies for transactions in the network and can be used to com-

pute the time required to reach a desired fraction of the network. Discussion on the chosen

lognormal distribution and possibly other models can be found in Section 6.

Our tool uses initial values for μ and σ and a default of 8 connections. However, these values

can be configured by the user. Estimates are generated based on transactions: Data points are

collected for each transaction. In principle, there will be one measurement per transaction and

connection, showing when a transaction was broadcast by a certain connected neighbour. The

monitoring will ignore any data points above the given connection number, due to the mecha-

nism used to adapt the estimations (cf. Section 7).

Technically, the tool consumes text-based input from the standard input. Each line repre-

sents one measurement: A timestamp, a node identifier and a transaction identifier. Both iden-

tifiers are SHA-256 encoded hashes, but they are treated as arbitrary strings. An example input

is given in Box 1.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 7 / 21

https://github.com/vs-uulm/btcmon
https://doi.org/10.1371/journal.pone.0243475

4.2 Interpretation of results

The estimates for lognormal parameters by the monitoring can be used to calculate interesting

properties of the transaction dissemination. The cumulative probability of the distribution cdf

(t), therefore, represents the fraction of the network that was likely reached by a given broad-

cast before a given time t.
Given μ = 8.5 and σ = 1 as a result, the time to reach 75% of the network can be determined

as the 75th percentile of the distribution. For the given values, this would be reached at t�
9500ms or 9.5 seconds.

4.3 Constraints

A client or library needs to be modified to produce logs in the required format for our tool.

One such modification is used in Section 5 using bitcoinj. This library is freely available, and

necessary modifications are provided in our code repository. Our modified version does not

participate in further distributing received transactions to produce quicker and more accurate

results.

As this behaviour can be detected and may be suspicious to other participants, a modified

client or library could select its measurement times and otherwise behave normally. We rec-

ommend relying on the behaviour of the exponential distribution and measure transactions

during long pauses created by high values drawn from the distribution. Measurements of

transactions produced by the client itself can be used all the time, by sending it to only a single

neighbour.

The tool is tuned on data collected from the Bitcoin network. If it is used on a different net-

work, the assumptions and modelling, e.g., is the lognormal distribution applicable, needs to

be redone. These assumptions and modelling are described in the following sections.

5 Data collection

In a preliminary step, we collected data on the amount and dissemination of transactions in

the Bitcoin network. This data is required to model the behaviour of interest (cf. Section 6),

i.e., the transaction dissemination latencies, and to evaluate the newly developed estimation

tool (cf. Section 8). Note that recreation of this step is not necessary to run the resulting soft-

ware, but only preparatory to create and validate models.

5.1 Related work

Several projects have measured network effects of Bitcoin. We do not consider work that

observed the Bitcoin network to deanonymise clients participating in the network [16–18].

Although they are monitoring the network, their results have a different goal.

Box 1. Listing 1. Example of a single input line for the monitoring tool

1547779473468,

6cf1100aaccec75da23995512fc7c7a5b6e25224f5903af011e78691c03d0455,

a73578820a41aa6180621bcd90af1997c88794b33d8db2f004ee37c3e09b10ec

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 8 / 21

https://doi.org/10.1371/journal.pone.0243475

Bitnodes provides public live data about the Bitcoin network through an application pro-

gramming interface (API) and web interface. Bitnodes uses the discovery mechanism of the

Bitcoin peer-to-peer network to find new peers and connects to them. Information provided

by bitnodes includes version numbers of clients and protocols used, nodes distribution over

countries, node counts and more. According to the website, the servers connect from a Ger-

man datacenter.

Coinscope [6] and Neudecker et al. [5] analysed and measured the Bitcoin network to infer

its topology. Coinscope is available as standalone modular software and provides large scale

monitoring capacity. The software attempts to connect to any reachable node in the Bitcoin

network, similar to bitnodes. However, the topology inference techniques rely on outdated

behaviour of the Bitcoin core client.

The DSN research group of the Karlsruher Institute of Technology produces similar live

monitoring information (https://dsn.tm.kit.edu/bitcoin/) as the one from bitnodes. The group

provides information including churn, versions of protocols and clients, node counts, propa-

gation times and more. The information is provided as graphs and tab separated raw datasets.

The nodes used to collect this information are located in Germany, and as noted by them,

results may vary depending on location.

To validate the data collected by different groups and analyse it further, we collected and

provide our own data set. These datasets were taken at worldwide locations and at different

but similar points in time.

5.2 Collecting methodology

To connect to the network, we modified the library bitcoinj (https://github.com/bitcoinj/

bitcoinj/releases/tag/v0.14.7) in version 0.14.7 to add logging capabilities, without modifying

any core behaviour. Our modifications on bitcoinj-core are:

a. Generation of a runtime key as a hash of random bytes, to apply a keyed hash to the iden-

tities of network participants.

b. Creation of a logging file.

c. For new inventory messages of transactions, the library logs information as a comma-sep-

arated line.

The information logged is structured in the following way:

1. Current timestamp of the java virtual machine (JVM) in milliseconds,

2. a keyed hash of the sender identity,

3. the hash of the transaction.

The generation of the runtime key (a.) and keying of sender identities (2.) is added to pro-

vide privacy to the participants of the network so that the data can be published. The anonymi-

sation of network participants is done during data collection. No author had access to personal

information.

With this modified library, we implemented an application that uses a connection limit of

5000 and does not broadcast received transactions, as to not influence the behaviour intended

to measure. This application was run on the local university servers, as well as on Microsoft

Azure virtual computers in three regions: Eastern Unites States, South-East Asia and Southern

Great Britain. The collection was run for about ten hours each and was rerun on the same vir-

tual machines on multiple dates.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 9 / 21

https://dsn.tm.kit.edu/bitcoin/
https://github.com/bitcoinj/bitcoinj/releases/tag/v0.14.7
https://github.com/bitcoinj/bitcoinj/releases/tag/v0.14.7
https://doi.org/10.1371/journal.pone.0243475

5.2.1 Reproduction. The modifications for bitcoinj and the application code are available

on GitHub (https://github.com/vs-uulm/CoinView, collection subfolder). Further, we provide

a precompiled version of the modified library for ease of reproduction. The collection should

be reproducible as long as the network will accept the version of the protocol used by the

library.

To collect data using these modifications, download the respective files and switch to the

collection/application subdirectory. Start data collection within a docker container

using the commands of Box 2, which are also documented in the repository.

Collected data will be written to a file of the form: “crawler-dd.mm.yyyy hh.mm.ss.csv”

where date and time shortages are replaced by the current date and time. The participation in

the network in this form is not prohibited by any terms of use.

5.3 Info

We collected nine datasets over multiple dates and locations [26], each between 200–670 mil-

lion individual points of data. Collections from Microsoft Azure provide much fewer data

points, as the virtual machines could not create as many connections as the local university

server. A description of all datasets can be found in Table 1. All collected datasets are available

online (DOI 10.5281/zenodo.2547396) as compressed archives.

6 Modelling

To reduce the number of connections needed, we abstract from the collected data to a statisti-

cal model. The model represents the frequencies of measured dissemination latencies. This

allows us to compute values of interest, such as expected time to reach 90% of the network,

using methods discussed in Section 3.4.

Box 2. Listing 2. Example of a single input line for the monitoring tool

docker run –it —rm –v $(PWD):/usr/src/btccol \

–w /usr/src/btccol —rm openjdk:8 /bin/bash

javac –cp ./bitcoinj –core –0.14.7–bundled.jar ./research/�.java

java –cp “.:./bitcoinj –core –0.14.7–bundled.jar” research/Main

Table 1. All collected datasets of the Bitcoin network.

Server position Nr. Date Data points Note

Ulm, Germany 1 2019-01-17 570 million

Azure US East 1

1

1

9
>>=

>>;

2019-01-24

207 million

Azure South-East Asia 207 million

Azure Great Britain South 205 million

Ulm, Germany 2 2019-02-01 202 million

Ulm, Germany 3

2

2

2

9
>>>>>=

>>>>>;

2019-02-06

669 million

204 million

203 million

204 million

9
>>>>>=

>>>>>;

Same identity key
Azure US East

Azure South-East Asia

Azure Great Britain South

https://doi.org/10.1371/journal.pone.0243475.t001

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 10 / 21

https://github.com/vs-uulm/CoinView
http://10.5281/zenodo.2547396
https://doi.org/10.1371/journal.pone.0243475.t001
https://doi.org/10.1371/journal.pone.0243475

6.1 Methodology

First, to determine the dissemination time for each transaction, we split the dataset by transac-

tion. To simplify the process, assume that the first logged occurrence of a transaction was pro-

duced by the originator of the transaction. This assumption is reasonable on average, as the

collected data is from a large fraction of the network: Either the originator or a node very close

to the originator is present in the data. As a consequence of this assumption, the data is nor-

malised for each transaction by subtracting the timestamp of the assumed originator, i.e., the

first entry for the transaction in the log.

The resulting time series for each transaction was then analysed for fitting distributions by

visual analysis. SciPy [27] fits reasonable distributions and produces a visual representation of

the data and created fits.

6.2 Other tested models

We explored several possible distributions before establishing the lognormal distribution as

the most fitting model. The tested distributions include a power-law dependency, an exponen-

tial, gamma or generalised Pareto distribution. Those distributions are suitable due to their

usage in network modelling and relationships to the Poisson distribution created by the pri-

vacy mechanism of Bitcoin.

A power law might be applicable for later percentiles of the datasets. Fig 2 shows one evalu-

ation of a possible power law. A linear segment at the end can imply a power-law dependency.

Fig 2. Density of the data of the February Southern Great Britain dataset in logarithmic scale, a power law dependency should

show as a linear dependency in the later part of the visualisation.

https://doi.org/10.1371/journal.pone.0243475.g002

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 11 / 21

https://doi.org/10.1371/journal.pone.0243475.g002
https://doi.org/10.1371/journal.pone.0243475

Some of the datasets show a stronger linear end, while most show less of a linear end, implying

a power law is not a suitable description of the data.

The gamma and exponential distributions are suitable due to their relation to network

modelling and the Bitcoin protocol. Both, and their similar related distributions, do not seem

to be a good fit for most of the data. Fig 3 shows an example in the form of probability density

functions.

Lastly, the generalised Pareto distribution was chosen due to their competition with the

lognormal distribution. Similar to the description in [23], we found the generalised Pareto distri-

bution to describe the extremities better than the lognormal distribution. In contrast, the lognor-

mal distribution is a better fit to describe the main part of the data. If the interest lies more on

the tail of the distribution, the generalised Pareto fit will give more accurate results. The general-

ised Pareto is also included in Fig 3, showing a similar fit as the lognormal distribution.

6.3 Lognormal model

While all analysed models produced some outliers, the lognormal distribution described a

huge chunk of the data well. Figs 4 and 5 provide normal probability plots of the (base 10) log-

arithm of several datasets. A normal probability plot shows a linear dependency for normally

distributed data, so it should show a linear dependency of the logarithm of the data, for a log-

normal distribution. Both, and in general all generated normal probability plots, show a strong

deviation of a linear trend in the first and last percentiles. The 95th to 99th percentiles show a

medium deviation from the linear trend.

Fig 3. Evaluations of different distributions for the February Southern Great Britain dataset. Compares probability density

functions and the histogram.

https://doi.org/10.1371/journal.pone.0243475.g003

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0243475.g003
https://doi.org/10.1371/journal.pone.0243475

Fig 4 shows datasets collected at the same time. As suggested by the DSN Bitcoin monitor-

ing [5], results vary by location, but the variation is small for most parts of the data.

Fig 5 shows datasets produced from the same place at different times. Together with the

description in Section 3.3 this strengthens the belief that the model is suitable over time.

One of the nine datasets, the Germany 1 dataset, shows more outliers. These outliers are

better explained by a mixed Gaussian distribution over the logarithm of the data. We did not

further explore this to reduce the risk of overfitting and due to the lognormal model providing

good results of most transactions within this dataset.

7 Live adaption of parameter estimates

The live monitoring should not depend on thousands of connections, nor on the collection of

huge amounts of data before processing. To solve these problems, we first evaluate schemes to

estimate the parameters of a lognormal model containing an unknown shift. A simulation of

all approaches, implemented based on the C++ standard library for lognormal random distri-

butions, helps to evaluate the quality of results. Lastly, to improve simulation results, a noise

reduction and error compensation scheme is applied.

7.1 Parameter inference

As only a low number of connections is desired, we can no longer assume the originator of a

transaction is captured in the data. The result is a three-parameter lognormal distribution,

with an unknown parameter γ, which represents the true origination time of the transaction.

Fig 4. Lognormal distribution plot of data collected from different Microsoft Azure zones on February 6th. Data will be

reasonably lognormal distributed if it is linear, indicated by a linear fit for the data collected from Great Britain.

https://doi.org/10.1371/journal.pone.0243475.g004

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0243475.g004
https://doi.org/10.1371/journal.pone.0243475

The data points of a given transaction are considered a measurement of this unknown γ shifted

distribution.

Based on methods of Iwase and Kanefuji [24] we applied the analytical method, as well as

the sampling-based method. The variance and skewness of the measurement m = {m1, . . ., mn}

a calculated as:

skewðmÞ ¼
Xn

i¼1

ðmi � meanðmÞÞ3

n � 1
; ð10Þ

varðmÞ ¼
Xn

i¼1

ðmi � meanðmÞÞ2

n
: ð11Þ

This also allows us to calculate σ directly.

The analytical method, using the moments skewness and variance result in the following

(with c = skew(m)):

t ¼
2þ c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � c2 þ c4
p

2

� �1
3

ð12Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log
t þ 1

t � 1

r��
�
�
�

�
�
�
�
�

ð13Þ

Fig 5. Lognormal distribution plot of data collected from the Southern Great Britain Microsoft Azure zone on different

dates. Data will be reasonably lognormal distributed if it is linear, indicated by the same fit as in Fig 4.

https://doi.org/10.1371/journal.pone.0243475.g005

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 14 / 21

https://doi.org/10.1371/journal.pone.0243475.g005
https://doi.org/10.1371/journal.pone.0243475

m ¼
log varðmÞ

expðs2Þ� 1

� �
� s2

2

ð14Þ

g ¼ meanðmÞ � expðmþ ð
s2

2
ÞÞ ð15Þ

The sampling-based approach tries to avoid to directly calculate γ, as only the parameters μ
and σ are of interest. Even further, given a previous estimate, only the difference of the esti-

mated and unknown μ are of interest, which can be calculated using Algorithm 1.

Algorithm 1 Algorithm to compute the difference an estimated μ value and a measure-

ment, without regard for a possible γ shift of the source of the measurement.
Input: List of measured timesamps m, estimated distribution e, number
of connections c, number of rounds r
Output: Difference of estimated and unknown μ
m {mi − min(m)}
means ;
for 1 to r do
s Draw c samples from e
s {si − min(s)}
means means

S
{mean(s)}

end for
return mean(means) − mean(m)

We simulated both approaches using a hidden lognormal distribution to generate measure-

ments for the transactions. This can be considered an ideal environment for the algorithm, as

the samples obey the distribution without systematic outliers. During the simulation, we

noticed both presented approaches produce an error dependent on the parameters of the hid-

den distribution, and there is a significant amount of noise, due to the low amount of samples

used. After some warmup steps, we compared the absolute error as well as the variance of the

error. The sampling-based approach produced a mean absolute error of� 0.13 with a variance

of� 0.02. The formula-based approach produced a mean absolute error of� 17.65 with a vari-

ance of� 0.11. We focused on the sampling-based approach, as the error and variance of the

error is substantially lower.

7.2 Bayesian approach

To compensate for the noise of a small number of samples, we apply a Bayesian approach

inspired by Kalman filters [28]. Conceptually, the estimates are improved with each measure-

ment, based on the difference between the measurement and the estimate.

Our apriori lognormal estimation is defined by μe, σe. Let m be a measurement of a transac-

tion with eight participants, then the differences of measured and estimated lognormal param-

eters are:

dm ¼ Algorithm1ðm; lnNðme; seÞ; 10; 100Þ; ð16Þ

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðmÞ

p
� se: ð17Þ

Given this difference, the estimates are updated based on a fraction of the difference, as

there are huge errors in measurements, due to the low number of connections. The update

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 15 / 21

https://doi.org/10.1371/journal.pone.0243475

process is rather simple:

meþ1 ¼ me þ
dm
c1

; ð18Þ

seþ1 ¼ se þ
ds
c2

: ð19Þ

For first evaluations c1 = 20 and c2 = 2000 were chosen. Further analysis of the error could

improve the speed of convergence, but sufficiently converged values for μ were reached after

the expected 25–30 steps.

Using this adaption mechanism, we detected an additional error between estimations and

measurements, even in an ideals world simulation, using lognormal distributions instead of

datasets approximating lognormal distributions.

7.3 Error compensation

To zero in on the error, we created further simulation experiments. The experiment performed

the Bayesian adaption using the sampling-based difference algorithm in Algorithm 1. We

restricted the experiment to the modification of μ, i.e., the estimated σ was fixed to the σ of the

hidden distribution. This setup allows us to evaluate the convergence of μ via the adaption, as

more and more measurements are captured.

The resulting error is shown in Fig 6 dependent on the μ and σ values of the hidden distri-

bution. The dependence on μ is negligible, while the dependence on σ is superlinear.

Restricting the analysis to one dimension, i.e. σ, a simple quadratic fit to the data provides

further insights. The results are shown in Fig 7. While this simple error correction mechanism

produced good results, we recommend a differently fitted error correction, should the system

be applied to networks with huge deviations, outside the highlighted area in the figure.

The fit produced the following error correction function:

errorðsÞ ¼ � 0:207898 � s2 þ 0:083586 � s � 0:032573: ð20Þ

As a result, we added the error correction to the return statement of Algorithm 1.

Fig 6. Heat map of the distance measured between a hidden distribution and our adapted estimates in a

simulation. The x axis shows the dependence of the distance to the μ parameter, while the y axis shows the dependence

on the σ parameter. The dependence on μ is negligible compared to σ.

https://doi.org/10.1371/journal.pone.0243475.g006

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 16 / 21

https://doi.org/10.1371/journal.pone.0243475.g006
https://doi.org/10.1371/journal.pone.0243475

8 Evaluation

This section focuses on the evaluation of the full scheme of monitoring Bitcoin.

8.1 Methodology

We use the datasets collected in Section 5 to evaluate the estimations provided by our tool. To

reduce evaluation load and remove connection warmup artefacts, we focused on the last 1 mil-

lion lines of each log for most logs. We also used our largest logs for a long term evaluation by

removing the first million lines.

We split each log prepared in this way by participant, i.e., each part contains all log entries

received from one network participant. We create one thousand new logs by selecting eight

participants at random and merging the logs in chronological order. Each new log represents a

log of a virtual node, having connections to only the selected participants.

We ran the monitoring tool on each new log, collecting all estimates over time. As the esti-

mation tool uses initial parameters which require some time to converge, we prepared alter-

nate versions of the results, where the first 30 steps, the warmup phase, has been removed.

This was important to have a realistic estimate on the deviation of the results, as some logs

might start much later into the original monitoring time, and create a bigger spread by logging

values close to the initial values.

The results of all runs were then aggregated into a single result log for each original dataset.

The aggregation creates bins of time to collect data. We then calculate the average and stan-

dard deviation of all collected data points in each bin.

Per dataset, we calculated the ground truth by splitting the logs by transaction, similar to

the method in Section 6.1. Each transaction was then normalised and used to fit a lognormal

distribution using SciPy. The fitted parameters were stored with the timestamp of the last con-

tributing log entry, to replicate the process of assigning a time from the estimation. For the

ground truth, we did not apply any averaging or further aggregation.

All software used for the evaluation is available in our code repositories (https://github.

com/vs-uulm/CoinView and https://github.com/vs-uulm/btcmon).

Fig 7. Simulation results to show the deviation between a hidden distribution and our adapted estimates

dependent on σ, similar to Fig 6, as well as a quadratic fit to correct for the deviation and the difference between

the fit and data, i.e., the corrected deviation.

https://doi.org/10.1371/journal.pone.0243475.g007

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 17 / 21

https://github.com/vs-uulm/CoinView
https://github.com/vs-uulm/CoinView
https://github.com/vs-uulm/btcmon
https://doi.org/10.1371/journal.pone.0243475.g007
https://doi.org/10.1371/journal.pone.0243475

8.2 Results

Fig 8 shows the results of the evaluation of the Great Britain 2 dataset, including warmup steps

for the estimation of μ. The adaption of μ shows a fairly large spread, which can be explained

by the original data: The dissemination of transaction is inherently noisy, but the estimates

capture the bulk of the data.

Using the estimated parameters μ� 8.5 and σ� 1.1 to estimate network behaviour leads to

the following latency estimates: The time to reach 50% of all network participants is approxi-

mately e8.5� 5000ms, while reaching 90% would take� 20100ms.

The long term evaluation using the Germany 3 dataset is shown in Fig 9 for μ and Fig 10 for

σ. The estimation shows an underestimation of the real-world data for μ but can capture strong

deviations as in the highlighted area. Sparse, long-lasting deviations can not be detected,

Fig 8. Evaluation of the μ parameter estimation using the Great Britain 2 dataset. The estimates are based on eight

randomly selected connections, while the SciPy estimation had access to the full data.

https://doi.org/10.1371/journal.pone.0243475.g008

Fig 9. Evaluation of the μ parameter estimation using the Germany 3 dataset. The estimates are based on eight

randomly selected connections, while the SciPy estimation had access to the full data.

https://doi.org/10.1371/journal.pone.0243475.g009

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 18 / 21

https://doi.org/10.1371/journal.pone.0243475.g008
https://doi.org/10.1371/journal.pone.0243475.g009
https://doi.org/10.1371/journal.pone.0243475

though. This is expected behaviour, as the estimate attempts to capture overall network

performance.

The estimation for σ overestimates the overall network behaviour during this long term

test. The reason for this seems to be the conflict of estimation of single transactions versus the

overall network behaviour. The results are sufficiently accurate to use them for computations,

though. The highlighted area relates to the highlight in the μ adaption, creating a huge spread

in the overall data, which can not be captured well by individual transactions.

Overall, the evaluation shows results sufficient for computation of dissemination times in

the network. Unfortunately, the real-world data is severely noisy, but the μ estimates capture

the bulk of the data well.

9 Conclusion

In this paper, we showed that overall dissemination times of transactions in the Bitcoin net-

work can be estimated using the minimum number of connections required by the Bitcoin ref-

erence client, i.e., eight connections. Low latency blockchain applications, such as ATMs and

file storage applications, profit from such monitoring capabilities for an improved user experi-

ence and estimation of double-spend risk.

The monitoring solution is realised by modelling the dissemination times using a lognor-

mal distribution. Such a distribution describes 98% of the collected transaction data well. We

provide a proof-of-concept implementation of our monitoring as well as all collected datasets

and methodology tools.

The noise created by using a very small number of connections is reduced by a Bayesian

scheme to adapt the estimates over several measurements. We also provide a mechanism to

determine the difference between the measurement and estimate, circumventing the unknown

shift of the real distribution. While the concrete modelling and implementation rely on effects

present in Bitcoin, variants are possible for similar networks, and the methodology can be

applied to different distributions and models.

The results of the provided tool show good adaption to inherently noisy real-world data

independent of geographic location and stable over time.

Fig 10. Evaluation of the σ parameter estimation using the Germany 3 dataset. The estimates are based on eight

randomly selected connections, while the SciPy estimation had access to the full data.

https://doi.org/10.1371/journal.pone.0243475.g010

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 19 / 21

https://doi.org/10.1371/journal.pone.0243475.g010
https://doi.org/10.1371/journal.pone.0243475

Author Contributions

Conceptualization: David Mödinger, Jan-Hendrik Lorenz, Rens W. van der Heijden, Franz J.

Hauck.

Data curation: David Mödinger.

Formal analysis: David Mödinger, Jan-Hendrik Lorenz.

Funding acquisition: Franz J. Hauck.

Investigation: David Mödinger, Jan-Hendrik Lorenz, Rens W. van der Heijden.

Methodology: David Mödinger, Jan-Hendrik Lorenz, Rens W. van der Heijden.

Resources: David Mödinger.

Software: David Mödinger.

Supervision: Franz J. Hauck.

Validation: David Mödinger, Jan-Hendrik Lorenz.

Visualization: David Mödinger, Franz J. Hauck.

Writing – original draft: David Mödinger.

Writing – review & editing: David Mödinger, Jan-Hendrik Lorenz, Rens W. van der Heijden,

Franz J. Hauck.

References
1. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System; 2009 [cited 2020 Nov 3]. Available from:

https://bitcoin.org/bitcoin.pdf.

2. Wolfson SN. Bitcoin: the early market. Journal of Business & Economics Research. 2015; 13(4):201–

214.

3. Kopp H, Mödinger D, Hauck F, Kargl F, Bösch C. Design of a Privacy-Preserving Decentralised File

Storage with Financial Incentives. In: 2017 IEEE European Symposium on Security and Privacy Work-

shops (EuroS PW); 2017. p. 14–22.

4. Subramanian H. Decentralised blockchain-based electronic marketplaces. Communications of the

ACM. 2018; 61(1):78–84.

5. Neudecker T, Andelfinger P, Hartenstein H. Timing Analysis for Inferring the Topology of the Bitcoin

Peer-to-Peer Network. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing,

Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data

Computing, Internet of People, and Smart World Congress 2016. p. 358–367.

6. Miller A, Litton J, Pachulski A, Gupta N, Levin D, Spring N, et al. Discovering bitcoin’s public topology

and influential nodes; 2015 [cited 2020 Nov 3]. Available from: https://allquantor.at/blockchainbib/pdf/

miller2015topology.pdf.

7. Yu C, Lumezanu C, Sharma A, Xu Q, Jiang G, Madhyastha HV. Software-Defined Latency Monitoring

in Data Center Networks. In: Mirkovic J, Liu Y, editors. Passive and Active Measurement. Cham:

Springer International Publishing; 2015. p. 360–372.

8. Breitbart Y, Chee-Yong Chan, Garofalakis M, Rastogi R, Silberschatz A. Efficiently monitoring band-

width and latency in IP networks. In: Proceedings IEEE INFOCOM 2001. Conference on Computer

Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications

Society (Cat. No.01CH37213). Vol. 2; 2001. p. 933–942 Vol.2.

9. Watve R, Mishra C, Sane S. Passive network latency monitoring. U.S. Patent No. 8,958,327. Washing-

ton, DC: U.S. Patent and Trademark Office; 2015.

10. Al-Shaer E, Yongning Tang. MRMON: remote multicast monitoring. In: 2004 IEEE/IFIP Network Opera-

tions and Management Symposium (IEEE Cat. No.04CH37507). Vol. 1; 2004. p. 585–598 Vol.1.

11. Krishnamurthy B, Wang J, Xie Y. Early measurements of a cluster-based architecture for P2P systems.

In: Internet Measurement Workshop; 2001. p. 105–109.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 20 / 21

https://bitcoin.org/bitcoin.pdf
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://doi.org/10.1371/journal.pone.0243475

12. Tsoumakos D, Roussopoulos N. Analysis and Comparison of P2P Search Methods. In: Proceedings of

the 1st International Conference on Scalable Information Systems. InfoScale’06. New York, NY, USA:

ACM; 2006. p. 25–es.

13. Stefan Saroiu SDG P Krishna Gummadi. Measurement study of peer-to-peer file sharing systems. In:

SPIE Proc. Vol. 4673; 2001. p. 1–15.

14. Butnaru B, Dragan F, Gardarin G, Manolescu J, Nguyen B, pop R, et al. P2PTester: a tool for measuring

P2P platform performance. In: 2007 IEEE 23rd International Conference on Data Engineering; 2007.

p. 1501–1502.

15. d Almeida EC, Sunyé G, Traon YL, Valduriez P. A Framework for Testing Peer-to-Peer Systems. In:

2008 19th International Symposium on Software Reliability Engineering (ISSRE); 2008. p. 167–176.

16. Biryukov A, Khovratovich D, Pustogarov I. Deanonymisation of Clients in Bitcoin P2P Network. In: Pro-

ceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. CCS’14.

New York, NY, USA: ACM; 2014. p. 15–29.

17. Biryukov A, Tikhomirov S. Deanonymization and linkability of cryptocurrency transactions based on net-

work analysis. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P); 2019. p. 172–

184.

18. Koshy P, Koshy D, McDaniel P. An Analysis of Anonymity in Bitcoin Using P2P Network Traffic. In:

Christin N, Safavi-Naini R, editors. Financial Cryptography and Data Security. Berlin, Heidelberg:

Springer Berlin Heidelberg; 2014. p. 469–485.

19. Gervais A, Karame GO, Wüst K, Glykantzis V, Ritzdorf H, Capkun S. On the Security and Performance

of Proof of Work Blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. CCS’16. New York, NY, USA: ACM; 2016. p. 3–16.

20. Decker C, Wattenhofer R. Information propagation in the Bitcoin network. In: IEEE P2P 2013 Proceed-

ings; 2013. p. 1–10.

21. Fanti G, Venkatakrishnan SB, Bakshi S, Denby B, Bhargava S, Miller A, et al. Dandelion++: Lightweight

Cryptocurrency Networking with Formal Anonymity Guarantees. SIGMETRICS Perform Eval Rev.

2019; 46(1):5–7. https://doi.org/10.1145/3308809.3308814

22. Mödinger D, Kopp H, Kargl F, Hauck FJ. A Flexible Network Approach to Privacy of Blockchain Trans-

actions. In: 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS);

2018. p. 1486–1491.

23. Norman L, Kotz S, Balakrishnan N. Continuous Univariate Distributions, Vol. 1 of wiley series in proba-

bility and mathematical statistics: applied probability and statistics; 1994.

24. Iwase K, Kanefuji K. Estimation for 3-parameter lognormal distribution with unknown shifted origin. Sta-

tistical Papers. 1994; 35(1):81–90. https://doi.org/10.1007/BF02926402

25. Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-

matical Tables. US Government printing office. 1970; Vol. 55.

26. Mödinger D, Hauck FJ. Bitcoin Network Transaction Inv Data with Java Timestamp and Originator Id.;

2019 [cited 2020 Nov 3]. Databse: Zenodo. Available from: https://doi.org/10.5281/zenodo.2547396.

27. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python; 2001–2020.

28. Welch G, Bishop G, et al. An introduction to the Kalman filter; 1995 [cited 2020 Nov 3]. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.336.5576&rep=rep1&type=pdf.

PLOS ONE Bitcoin network dissemination latency estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0243475 December 10, 2020 21 / 21

https://doi.org/10.1145/3308809.3308814
https://doi.org/10.1007/BF02926402
https://doi.org/10.5281/zenodo.2547396
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.336.5576&rep=rep1&type=pdf
https://doi.org/10.1371/journal.pone.0243475

