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Abstract

Privacy concerns are widely discussed in research and society in general. For the public

infrastructure of financial blockchains, this discussion encompasses the privacy of the origi-

nator of a transaction broadcasted on the underlying peer-to-peer network. Adaptive diffu-

sion is an approach to expose an alternative source of a message to attackers. However,

this approach assumes an unsuitable attacker model and a non-realistic network model for

current peer-to-peer networks on the Internet. We transform adaptive diffusion into a new

statistical privacy-preserving broadcast protocol for realistic current networks. We model a

class of unstructured peer-to-peer networks as organically growing graphs and provide

models for other classes of such networks. We show that the distribution of shortest paths

can be modelled using a normal distribution N ðm;s2Þ. We determine statistical estimators

for μ, σ via multivariate models. The model behaves logarithmic over the number of nodes

n and proportional to an inverse exponential over the number of added edges per node k.

These results facilitate the computation of optimal forwarding probabilities during the dis-

semination phase for maximum privacy, with participants having only limited information

about network topology.

1 Introduction

An increasing number of data breaches and media coverage of privacy concerns has led to a

heightened awareness of privacy concerns in research and for laypersons. Especially in finan-

cial contexts, such as cryptocurrencies, engineers and researchers produced many privacy-

improving proposals—either improving privacy on otherwise non-privacy–preserving systems

[1] or implementing new systems with privacy-first practices [2–4]. Financial transactions are

anonymised in these systems, but they still require broadcasting to all participants.

Privacy for network message broadcasts is also relevant outside of cryptocurrencies. Peer-

to-peer file-sharing or content networks [5] such as Gnutella [6] or IPFS [7] use broadcasts, or

behaviour similar to a broadcast, for search queries. These queries can be used to track user

behaviour even for very sensitive data, such as health conditions and personal interests.

Broadcast behaviour provides additional challenges for privacy [8–12], as the message must

be available to all participants. Attempts to improve privacy of peer-to-peer networks include
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established protocols such as Tor or I2P [13], as well as new protocols [14–17]. These new pro-

tocols are tailor-made for broadcast applications, which was not a goal in classical protocols

such as Tor.

Our previous proposal [16, 18] considered adaptive diffusion [19] as an intermediate pri-

vacy providing phase. Unfortunately, the attacker model of adaptive diffusion is based on a

snapshot knowledge of nodes that already received a given message. This model is not well

suited for privacy in real-world computer networks, as it does not represent the capabilities of

common attackers well, e.g., link information and compromised or cooperating network par-

ticipants. Further, the forwarding probabilities are derived from an infinite tree network,

which is not encountered in real-world networks, as even structured peer-to-peer networks [5]

usually contain cycles.

1.1 Contributions

In this paper, we clear these obstacles to adoption in real-world computer networks. We trans-

form adaptive diffusion into a protocol for realistic networks. In detail, we

(i). derive optimal forwarding probabilities for adaptive diffusion, based on the abstract dis-

tribution of shortest paths in the underlying network,

(ii). model the distribution of shortest paths in k-growing graphs,

(iii). provide an estimator for the distribution of shortest paths based on the number of par-

ticipants n and edges per node k, and

(iv). change the protocol so that it can withstand a more realistic attacker model.

1.2 Roadmap

In Section 2, we describe the scenario of this paper, as well as relevant background information,

including the original adaptive diffusion protocol. Section 3 gives an overview of the resulting

transformation of adaptive diffusion. In Sections 4 and 5 we discuss the details of the required

changes to the protocol. Section 4 considers the changes in privacy and network assumptions of

adaptive diffusion for the transformation to a network protocol. In Section 5, we investigate dis-

tributions to determine a concrete implementation of the probabilities involved with the proto-

col. To achieve this, we derive an estimation of the shortest paths for networks following a k-

growing model. Section 6 discusses the privacy properties of the resulting protocol.

2 Background

2.1 Notation

A short overview of common notation used within this paper is given by Table 1.

Table 1. Notation used throughout this paper.

Notation Explanation

m A given message within our system.

HðmÞ A hash function H applied on a message.

v A vertex of the graph, also called a node or participant of the network.

N(v) Set of all neighbours of node v.

Nm Selected neighbours of a node during a protocol run for message m.

N ðm;s2Þ Normal distribution with parameters μ and σ2.

https://doi.org/10.1371/journal.pone.0251458.t001
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2.2 Scenario

In this paper, we discuss the privacy of broadcasts within an unstructured peer-to-peer net-

work. For some applications, e.g., broadcasts of financial transactions in a blockchain network,

the sender of a broadcast message has an interest in not being revealed. This is, despite the

main goal being everyone receiving their message. The goal is, therefore, to hide the originator

of such a message.

The default solution to broadcasting a message in an unstructured network is a flood-and-

prune broadcast. Here, the sender sends the message to all its neighbours. A node that has not

received the message yet will send it to all of its neighbours. The node excludes the link over

which it received the message. Broadcasting, in this way, produces a highly symmetrical dis-

semination pattern, leading to possible identification attacks.

Assume there are nodes, which are collaborating to identify the originator of such a mes-

sage, as shown in Fig 1. Those nodes might be distributed throughout the network and can

learn the topology of the network over time. These nodes can reliably estimate the identity of

the sender of the message by determining the graph centre, or Jordan centre, of the nodes that

already received the message. The Jordan centre of the graph is the node, which has the small-

est distance to all affected nodes. Given a graph G with a set of vertices V and edges E, as well

as a distance function d, the Jordan centre can be defined as:

centerðGV;EÞ≔ argminu2V maxðdðu; vÞ : v 2 VÞ: ð1Þ

In our scenario, the affected nodes are those that already received the message.

While varying network latencies might distort the result, the set of likely originators is

small. Lastly, an attacker might also create connections to all nodes, always receiving the mes-

sage as a neighbour of the true source.

Fig 1. Motivating example: The originator of a message (O, blue) disseminates a message along the connections

(arrows). The area highlights all nodes that received the message so far. Attackers (A, red) distributed throughout the

network will receive the message in the next step and can reconstruct the originating node.

https://doi.org/10.1371/journal.pone.0251458.g001
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2.3 Networks and graphs

Peer-to-peer networks can be constructed in various ways [5]. One of the broadest distinctions

of peer-to-peer networks is between structured and unstructured networks. Structured peer-

to-peer networks tightly control their overlay, while unstructured peer-to-peer networks have

peers join the network on loose rules. Unstructured networks often use broadcasts, often called

flooding in peer-to-peer contexts, across the overlay [5].

One set of rules to create such a network has a new peer connect to nodes selected ran-

domly from a list of known participants. This list can be initially retrieved by publicly known

participants or via a gossip protocol while part of the network. The number of created connec-

tions maintained by new nodes is often fixed in the client source code. Examples of this con-

struction are the network of Bitcoin [20] and classic Gnutella [6].

To model this behaviour via graphs, we use an establishing algorithm. Let us try to establish

a network of n nodes, or vertices, by successively adding nodes. Each node establishes k edges,

or connections, to previously existing nodes. No node establishes loops, i.e., edges with itself

or multiple edges. The result is, therefore, a simple graph. In this paper, we call this a k-grow-

ing graph with n nodes.

The previous design ensures a connected component of all network participants. Further,

the design is resistant to churn, the act of peers joining and leaving the network, which is not

reflected in the model. Churn within a model is a complicated parameters [21], as churn rates

may differ for nodes dependent on their network participation, i.e., long-running nodes are

often less likely to leave the network.

To introduce adaptive diffusion, we also require the concept of an infinite d-regular tree.

Such a graph has no cycles and is connected, i.e., between any two nodes exists exactly one

path. Further, each node has a degree of d, i.e., each node is connected to exactly d neighbours

via d edges. As it is infinite, there is no number n limiting the number of nodes and no maxi-

mum distance within the graph, often called a graph diameter. For a more in-depth introduc-

tion to graphs, c.f. Jackson’s Social and Economic Networks [22].

2.4 Attacker model

Throughout this paper, we consider attacks on the privacy of network participants. This attack

is performed by a colluding fraction of participants of the network, which act in a semi-honest

or honest-but-curious manner. Attackers follow the protocol but will attempt to infer the iden-

tity of the originator of a given message, i.e., which node created it. This model is used in simi-

lar settings [17], as it focuses on information leaks within the protocol.

2.5 Probability distributions

For this paper, we revisit some statistical fundamentals in the form of probability distributions.

Probability distributions can be separated into two categories: discrete and continuous distri-

butions [23, 24]. A discrete probability distribution is one that only takes a countable set of val-

ues. Continuous distributions, on the other hand, have a support (points where they are not

zero) of uncountable size, e.g., the real numbers of zero to infinity. In quite a few cases, contin-

uous distributions might be more suited to model a discrete problem while transforming the

result back into the discrete space.

In this paper, we make heavy use of the normal distribution with the expected value μ and

variance σ2. The probability distribution is defined by its probability density function (PDF).

The support, i.e., non zero values of the PDF, of the normal distribution is (−inf, inf)).

The support being all of the real numbersR can be problematic for some applications. To

address this, the truncated normal distribution limits the distribution to some interval ½a; b� � R:
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This requires re-normalisation of the result. As the integral of the PDF of the normal distribution

over [a, b] is smaller than 1.

Another distribution based on the normal distribution is the log-normal distribution. Here,

the domain is transformed, changing the default support to (0, +inf). This distribution is useful

when the logarithm of the data is normally distributed.

Lastly, we make use of the Weibull distribution as a representative of the extreme value dis-

tributions family. This family models maxima or minima, with a support of [0, +inf).

2.6 Adaptive diffusion

Adaptive diffusion [19] is a protocol developed to address the privacy impact of the symmetry

of flood-and-prune broadcasts. It breaks the symmetry present in regular flood-and-prune

broadcasts by creating a virtual, or fake, source of the message. The virtual source spreads the

message in such a way that they are the Jordan centre of the graph of nodes that received the

message so far, not the true source of the message.

The virtual source cannot stay with the true source. To move the virtual source away, the

current virtual source designates a neighbour as the new virtual source probabilistically. The

goal is to equalise the probability of any node, that already received the message, to be the true

source. In other words, if n nodes received the message, the probability of any node vi having

received the message being the true source v should be approximately P½vi ¼ v� � 1

n.

The forwarding probabilities are dependent on the underlying network assumptions. Adap-

tive diffusion uses a d-regular infinite tree as its basic network model, i.e., each node has

exactly d neighbours, and there are infinite participants within the network. Further, message

transmission happens only at discrete time steps. The message and message transmission are

often called infections and may be used to model the spread of diseases. The probability of

forwarding depends on the number of previous forwards h, the current number of steps so far

t and the degree of the underlying tree-network d. Using these parameters, the probability of

designating a new virtual source is derived by Fanti et al. as

pdðt; hÞ ¼

t � 2hþ 2

t þ 2
if d ¼ 2;

ðd � 1Þ
t
2
� hþ1
� 1

ðd � 1Þ
t
2
þ1
� 1Þ

if d > 2:

8
>>>><

>>>>:

ð2Þ

Although this approach is designed for cycle-free networks, Fanti et al. provide [19] it

works well even for general networks. For a network protocol, adaptive diffusion provides a

few challenges. A suitably powerful attacker can subvert the protocol by connecting to a large

number of nodes, as a node informs all neighbours of new messages, reducing the privacy

guarantees to distance one. Further, later messages deliver the hop count h of current forwards,

eliminating all nodes of a distance not equal to h. Lastly, the discrete-time model needs to be

transformed into a continuous-time model of real-world computing systems.

2.7 Alternative approaches

Bellet et al. [17] investigate a simple gossip protocol with a mute parameter s over a complete

graph, i.e., every node is connected to any other node. A node disseminating a message has a

probability of 1 − s of stopping to disseminate after each interaction with a neighbour. With

s = 0 a node forwards a message exactly once, while s = 1 leads to nodes forwarding the mes-

sage via all available connections—essentially a flood-and-prune broadcast. Bellet et al. show

that gossip with a mute value of s has a differential privacy guarantee of δ = s + (1 − s)β, where
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β is the fraction of attackers in the network, resulting in the lower bound of differential privacy

equal to β. Our work in this paper is targeting different topologies, complicating the analysis.

Adaptive diffusion is not the only approach to privacy in contact networks or peer-to-peer

networks. Dandelion [14] and Dandelion++ [15] attempt to provide privacy to Bitcoins peer-

to-peer network. The protocol is based on an anonymity phase, where each node forwards the

message exactly once, similar to the gossip protocol with the mute parameter equal s = 0.

Unlike the gossip protocol, the selection of neighbours is not random, but follows a pattern:

An approximation of a Hamilton path [14]. Nodes during this first phase have a chance, e.g.,

10%, of switching to a flood-and-prune broadcast. One disadvantage of this behaviour is the

indeterministic switch, prolonging the privacy phase for a long time, e.g., in the 95th percen-

tile, a phase change requires more than 28 hops.

The main advantage of adaptive diffusion over the presented approaches is the non-proba-

bilistic runtime guarantee and additional structure. This allows for deployment in systems

with lower latency requirements [25].

3 k-growing η-adaptive diffusion

The general idea is still that of adaptive diffusion: The virtual source should forward messages

so that it is the Jordan centre of the sub-graph created from all nodes that received the message.

In detail, we apply some modifications to the protocol.

First, we limit the spread, i.e., the number of neighbours involved in the dissemination, to η
many neighbours. This change reflects in the message handling sub-protocol Algorithm 1, as

nodes need to select a limited set of neighbours for a given protocol run, compare Line 2. We

store the selected neighboursNm across multiple runs of the protocol, but for different mes-

sages m, the neighbours are selected again.

Further, arbitrary networks may have multiple paths between nodes, so a node may be

selected as a neighbour for this protocol run, by multiple nodes. To prevent asymmetric

spread, a node must only react on messages received via a single path. To enforce this, we store

the first node we interact with given a message m as the predecessorm, see Line 3.

Algorithm 1 η-adaptive diffusion message handling algorithm.
Input: Message m
Environment: Message sender v, Self vself
1: if predecessorm = ⌀ then
2: Nm = randomly select η neighbours out of N(vself)\{v}
3: predecessorm = v
4: else
5: if predecessorm = v then
6: send m to all Nm

7: end if
8: end if

The virtual source sub-protocol Aogorithm 2 requires further changes. The true source

uses the message ðv; t ¼ 1; r ¼ HðmÞÞ to initiate the protocol, which we call the virtual source

token. HðmÞ is a suitable hash function to identify the current message efficiently. The hop

counter h has been dropped, as it leaks the distance to the true source to possible attackers.

On receiving the virtual source token, e.g., via Line 12, the recipient balances the spread of

the message, so they are the centre of the spread graph. This is achieved by triggering the mes-

sage handling algorithm on all neighbours, not including the node that sent the initiation mes-

sage. This process is covered by lines 1 through 6.

The later part of the algorithm either forwards the message to all selected neighbours, see

Line 16, which were selected in the message handling algorithm, Algorithm 1. Alternatively,

the virtual source token is forwarded to a new virtual source ith probability pt, c.f., Line 10.
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The probability pt can be computed based on the distance distribution within the network f,
i.e., f(i) gives the expected number of nodes in distance i of any node. The exact computation

is quite involved; compare Section 4 for details.

Algorithm 2 η-Adaptive Diffusion virtual source handling algorithm.
Input: Previous virtual source vp, message identifier HðmÞ, current
timestep t
Environment: Neighbours Nm with jNmj ¼ Zþ 1, depth d
1: for v 2 Nm fvpg do
2: Send m to v
3: if t + 1 � d and t > 1 then
4: Send m to v
5: end if
6: end for
7: while t � d do
8: t = t + 1
9: x ¼� Uð0; 1Þ
10: if x � pt then
11: vnext ¼� UfNm fvpgg

12: Send ðvself ; t;HðmÞÞ to vnext, to call Algorithm 2
13: break
14: else
15: Wait for �1 expected network latency
16: for v 2 Nm do
17: Send m to v
18: end for
19: end if
20: end while

After a suitable threshold is reached for the privacy of the originator, i.e., the set of potential

originators is large enough, the protocol switched to a flood-and-prune broadcast. This will

ensure delivery to all participants and increase efficiency. At this point, privacy would barely

improve by continuing adaptive diffusion. Expected privacy has reached its maximum once

the full network is part of the set of potential originators.

To preserve the privacy of participants, nodes must monitor network latencies, as they have

to artificially slow down the protocol when keeping a virtual source token. Further, every vir-

tual source node must monitor the network for the progress of the protocol. A time-out will

trigger retransmission to a different participant, as the previously selected is considered as

refusing cooperation or unreachable. The time-out will extend when a message related to the

current protocol instance is received, i.e., it concerns the message m. The time-out will only

stop when receiving a flood-and-prune message relating to the same message m.

4 Privacy for general networks

4.1 Challenges

Some generalisations arise when considering general computer networks instead of infinite

tree graphs. General networks may have cycles, i.e., multiple paths between participants, and a

non-regular distance distribution. To extend the model of adaptive diffusion to these circum-

stances, we replace the calculations based on properties of a tree with a more general distribu-

tion function f, i.e., there are f(i) nodes with distance i.
To prevent an attacker from learning additional information about the originator, we have

to modify some aspects of the protocol. First, we have to remove the h used in the protocol, as

an attacker can infer the exact distance to the originator. As other participants may not know

the distance distribution of the originator and to keep the protocol general, we will use a

PLOS ONE Statistical privacy-preserving message broadcast for peer-to-peer networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251458 May 10, 2021 7 / 24

https://doi.org/10.1371/journal.pone.0251458


homogeneous distribution, i.e., all nodes use the same distribution f to compute their

probabilities.

First, we will analyse the ideal situation for virtual source passing. Based on the results in an

ideal setting, we show the minimal required modifications for non-ideal settings.

4.2 Ideal virtual source passing probabilities

As there is no fixed topology to analyse, we need to model the process of passing the virtual

source token in a more abstract way. To model the process, we use a time inhomogeneous

Markov chain, i.e., the probabilities involved may change based on the time t. For a network of

diameter⌀ the chain has⌀ + 1 states 0, 1, . . .,⌀. Each state represents the current distance of

the virtual source from the true source.

A node of distance h to the true source should pass the virtual source token to a more dis-

tant node with probability pt(h). Alternatively, the node keeps the distance the same with prob-

ability 1 − pt(h). The Markov chain with these properties is visualised in Fig 2.

As noted before, a participant may not know its actual distance to the true source h, so the

probabilities pt(h) may not depend on the distance to the true source.

At time t, let the i-th row of the vector Pt 2 [0, 1]t describe the probability of the virtual

source token being with a node of distance i from the true source. We have P1 = (1), as the true

source has distance 0 to itself and has the token initially. Further, let Mt 2 [0, 1]t+1×t be the sto-

chastic column matrix describing the transition from the t-th to the (t + 1)-st step, i.e., Pt+1 =

Mt Pt = Mt Mt−1. . .M1 P1. Based on our Markov model, the matrix Mt has the form:

Mt ¼

1 � ptð0Þ 0 0 � � � 0

ptð0Þ 1 � ptð1Þ 0 ..
.

0 ptð1Þ
. .

. . .
.

0

..

. . .
. . .

.
0

..

. . .
.

1 � ptðt � 1Þ

0 � � � � � � 0 ptðt � 1Þ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

To solve for probabilities pt(h), we define our goal state: the probabilities for all any reach-

able node should be

1

#reachable nodes in step t
¼

1
Pt� 1

s¼0
f ðtÞ

:

Fig 2. Time inhomogeneous Markov chain of passing the virtual source token.

https://doi.org/10.1371/journal.pone.0251458.g002

PLOS ONE Statistical privacy-preserving message broadcast for peer-to-peer networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251458 May 10, 2021 8 / 24

https://doi.org/10.1371/journal.pone.0251458.g002
https://doi.org/10.1371/journal.pone.0251458


Using this, we can describe the probability of a node of distance i having the token at step t
as

ftðiÞ ¼
f ðiÞ

Pt� 1

s¼0
f ðsÞ

:

Using this, we can write the goal of equal probability as

Pt ¼

ftð0Þ

ftð1Þ

..

.

ftðt � 1Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼
1

Pt� 1

s¼0
f ðsÞ

f ð0Þ

f ð1Þ

..

.

f ðt � 1Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼
! MtMt� 1 . . .M1P1:

Unfortunately, the number of restrictions does not necessarily allow for a single solution,

perfectly fulfilling our goal. We can compute a possible solution pt based on the last row of our

transition equation.

Mt� 1Pt� 1 ¼

1 � pt� 1ð0Þ

pt� 1ð0Þ
. .

.

. .
.

1 � pt� 1ðt � 2Þ

pt� 1ðt � 2Þ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ft� 1ð0Þ

ft� 1ð1Þ

..

.

ft� 1ðt � 2Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼

ftð0Þ

ftð1Þ

..

.

ftðt � 1Þ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼ Pt

First line:

ð1 � pt� 1ð0ÞÞft� 1ð0Þ ¼ ftð0Þ

, 1 � pt� 1ð0Þ ¼
ftð0Þ

ft� 1ð0Þ

, pt� 1ð0Þ ¼ 1 �
ftð0Þ

ft� 1ð0Þ

, ptð0Þ ¼ 1 �
ftþ1ð0Þ

ftð0Þ

(i + 1)-st line:

ftðiÞ ¼ pt� 1ði � 1Þft� 1ði � 1Þ þ ð1 � pt� 1ðiÞÞft� 1ðiÞ

, ð1 � pt� 1ðiÞÞft� 1ðiÞ ¼ ftðiÞ � pt� 1ði � 1Þft� 1ði � 1Þ

, pt� 1ðiÞ ¼ 1 �
ftðiÞ � pt� 1ði � 1Þft� 1ði � 1Þ

ft� 1ðiÞ

, ptðiÞ ¼ 1 �
ftþ1ðiÞ � ptði � 1Þftði � 1Þ

ftðiÞ
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By induction we arrive at:

ftðiÞptðiÞ|fflfflfflffl{zfflfflfflffl}
ai

¼ ftðiÞ � ftþ1ðiÞ þ ptði � 1Þftði � 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ai� 1

, ftðiÞptðiÞ ¼
Xi

j¼0

ðftðjÞ � ftþ1ðjÞÞ

, ptðiÞ ¼
Pi

j¼0
ðftðjÞ � ftþ1ðjÞÞ
ftðiÞ

As the actual distance of a node from the origin is unknown, we have to determine a single

probability. As the distribution over h is known—it is our desired state ft—we can combine

these with the precomputed probabilities per distance. This achieves a single forwarding prob-

ability:

pt ¼
Xt� 1

h¼0

ftðhÞptðhÞ:

A node that did not forward the token could recompute the forwarding probability using

its expected distance from the previous round to achieve better hiding.

4.3 Non-ideal virtual source passing

The ideal solution only holds if and only if the next state Pt is reachable from Pt−1 by a single

increase or stay. The condition can be formalised with the following requirements, derived

from the solution:

0 �
ftð0Þ

ft� 1ð0Þ
� 1 ð3Þ

0 �

Pi
j¼0
ðftðjÞ � ftþ1ðjÞÞ
ftðiÞ

� 1 ð4Þ

Eq (3) is always true by construction, as f(i) > 0 and

ftð0Þ

ft� 1ð0Þ
¼

f ð0Þ
Pt� 1

s¼0
f ðsÞ

f ð0Þ
Pt� 2

s¼0
f ðsÞ

¼

Pt� 2

s¼0
f ðsÞ

Pt� 1

s¼0
f ðsÞ
� 1:

Eq (4) intuitively describes that the probability of a node in distance j possessing the token

cannot exceed the probability of a node of the same distance possessing the token in the previ-

ous time step in addition to the total change in lower distances.

If this condition is violated, we need to compensate in the distribution or probabilities.

Either way, the resulting distribution will be non-optimal hiding. To minimise the deviation,

we determine the final desired state of the protocol, after t steps, with t�⌀. We then compute
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a new P0i; 8i � t as

P0i ¼

f0ið0Þ

..

.

f0iði � 1Þ

0

B
B
B
B
@

1

C
C
C
C
A

Here, f0 is derived from f as:

f0tðiÞ ¼

(
ftðiÞ if t is max desired state

ftðiÞ þ max ðwt;i; dt;iÞ otherwise

wt;i ¼
Xt

j¼iþ1

ftðjÞ � f
0

tðjÞ

dt;i ¼ f
0

tþ1
ðtÞ � ftðiÞ þ

Xt� 1

jiþ1

ðf0tþ1
ðjÞ � f0tðjÞÞ

The value δt,i represents the difference required to fulfil Eq (4). On the other hand, χt,i rep-

resents all changes made to later entries, i.e., propagating the changes made through δ. Note

that Eq (4) is equivalent to the following.

0 �

Pi
j¼0
ðftðjÞ � ftþ1ðjÞÞ
ftðiÞ

� 1

0 �
Xi

j¼0

ðftðjÞ � ftþ1ðjÞÞ � ftðiÞ

Applying this equation to our goal state f0 we find the generation of f0 through the following

changes:

f0tðiÞ �
Xi

j¼0

ðf0tðjÞ � f
0

tþ1
ðjÞÞ

¼
Xi

j¼0

f0tðjÞ �
Xi

j¼0

f0tþ1
ðjÞ

¼

Pk� 1

j¼0
fkðjÞ¼1

1 �
Xt� 1

j¼iþ1

f0tðjÞ � ð1 �
Xt

j¼iþ1

f0tþ1
ðjÞÞ

¼
Xt� 1

j¼iþ1

f0tðjÞ þ
Xt

j¼iþ1

f0tþ1
ðjÞ

¼
Xt� 1

j¼iþ1

f0tðjÞ þ
Xt� 1

j¼iþ1

f0tþ1
ðjÞ þ f0tþ1

ðtÞ

¼
Xt� 1

j¼iþ1

ðf0tðjÞ þ f
0

tþ1
ðjÞÞ þ f0tþ1

ðtÞ:

This leaves us with only known values, allowing us to compute the minimum difference

required, i.e., δt,i. We showed that if it is possible to achieve an optimal result, probabilities
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derived from f0 are optimal. If such a result is not possible, probabilities derived from f0 will

yield a result with minimum deviation for intermediate steps.

4.4 Continuous time

All previous discussions are in discrete time, i.e., the time t is in steps, especially natural num-

bers. A network protocol must operate in some form of continuous-time or at discrete time-

steps small enough to be considered continuous for practical purposes. Fortunately, network

protocols lend themselves for a simple conversion technique: network latency.

If there was no delay between messages, a token transfer to another node could be observed

by all participants of the protocol so far. To prevent this observation, a node must insert an

artificial latency when not forwarding the message. The latency should be drawn from a distri-

bution indistinguishable from real network latencies. Therefore, a node must observe the

latencies of its connections.

4.5 Spread reduction

One remaining privacy problem of adaptive diffusion is the selection of all neighbours for dis-

semination. If an attacker is a neighbour of the first recipient of the virtual source token, they

will notice the broadcast as soon as possible without being the first virtual source recipient. An

attacker can force this situation by creating connections to all participants in the network.

Even with many unobtrusive attackers distributed throughout the network, the chance of

selection is high.

To reduce privacy leaks, we introduce the parameter η. Participants only select η neigh-

bours to participate in the protocol instead of all neighbours. This reduces the chance of select-

ing at least one attacker.

Limiting the set of participating neighbours prevents full coverage of the network through

adaptive diffusion alone. Therefore, an additional flood-and-prune phase is necessary to

ensure delivery to all network participants. Lastly, lower values of η increase the required time

to reach larger parts of the network, e.g., 21 nodes are reached after three spread rounds with η
= 2, while η = 5 reaches 30 nodes in two spread rounds.

4.6 Limitations

Unfortunately, a node cannot reliably decide which edges increase or decrease the distance to

the true source, as the source is unknown or an edge with the desired probability is not avail-

able. For every node, keeping the token will keep the distance the same. As a heuristic for early

nodes, returning the token along the path it was received likely reduces the distance by one,

while forwarding it to another node likely increases the distance. Knowledge about the neigh-

bours of neighbours can increase the accuracy of this heuristic.

For networks observed in real-world peer-to-peer-networks, the small-world property

likely holds [22, 26]: the shortest distance between any two nodes is likely below or equal to 6.

After six steps, the candidate pool for the true source is most of the network. Therefore, per-

forming the analysis is sufficient for the early steps of the protocol.

Due to the lack of information stemming from the privacy requirements, the distribution of

nodes holding the virtual source is distorted at every step, making the result less accurate.

Alternative approximations based on the distribution may perform better empirically. One

improvement may be a better approximation by nodes holding the virtual source token. They

can infer their distance to the true source to be at most t the moment they receive the token.

Therefore, they have no reason to use the probabilities as if they were at distance t+ 1 should

they keep the token.
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Lastly, the previous section’s result is based on a distribution of the shortest paths within

the networks. This distribution is not generally known for most graph types and could not be

empirically determined by a participant without knowledge of the topology.

5 Distribution model

We analysed expected k-growing network topologies, which are similar to real-world peer-to-

peer network growth, for their distance distributions. This relieves the final limitation, knowl-

edge about a concrete distribution. The result allows a node to compute pt based on the num-

ber of expected edges per node and the number of nodes in the network.

5.1 Distributions for alternative models

Fronczak et al. [27] derive an exact solution for random Erdös-Rényi graphs, i.e., random

graphs where all edges are equally likely. They especially consider Erdös-Rényi graphs with

two hidden variables hi and hj. Let γ� 0.5772 be Euler’s constant, the resulting average degree

distribution is given by

l ¼
� 2ðlnhÞ þ lnN þ lnðh2Þ � g

lnN þ lnðh2Þ � lnb
þ

1

2
: ð5Þ

Loguinov et al. [28] investigate structured peer-to-peer networks. They provide a succinct

overview over shortest path results for Chord and CAN networks. Chord shortest paths are

binomially distributed, which tends to a normal distribution for larger values, while CAN

becomes normal as well, for increasing CAN dimensions. Lastly, they propose an architecture

using de Bruijn graphs, which have no closed-form for their distribution of shortest paths but

give an exponential approximation.

Roos et al. [29] derive a model for Kademlia like systems. Kademlia is a structured peer-to-

peer network with routing based on b-bit long identifier spaces. They consider a network of

order n, where routing considers α close nodes to reach β nodes close to the target, based on

a k-bucket routing system. They model the hop count distribution of a given system via a

Markov chain. They derive a space complexity of O b2a

ða!Þ2

� �
and computation complexity of

Oðnbaðbþ2ÞÞ for their resulting model. As α, β and k are usually constant for a given deploy-

ment, it is manageable for network participants but not optimal. For details about the fairly

complex model, refer to the original publication [29].

The results provided by these works are applicable if the network conforms to the proposed

structure. Unfortunately, they do not map well to the proposed model, lack an approach for

parameter inference and are complex to use.

5.2 Methodology

We determine suitable distributions and their parameters by creating and analysing random

graphs. To create the graphs, we use igraph, while the analysis is done using scipy [30].

We chose igraph’s graph establishment function, which takes a number of nodes n and a

number of edges per node k. The method creates a random graph by sequentially adding

nodes. Each node creates k edges to already existing nodes. This scheme leads to a connected

graph, where older nodes have a higher number of connections, while new nodes have at least

k connections.

We chose this scheme as it is similar to the schemes used in peer-to-peer networks. A new

node connects to publicly known nodes and asks for a set of participants. The new node then

chooses some number of nodes to connect to. This model is a simplification, as it ignores
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churn, i.e., nodes leaving and joining the network again, but it is a close fit for real-world

applications.

To reproduce the steps and results of this paper, we provide a repository of our data and

scripts under the MIT open source license, including an interactive notebook for experimenta-

tion: https://github.com/vs-uulm/eta-adaptive.

5.3 Models for distance distribution

To model the observed behaviour, we chose various discrete and continuous distributions. As

discrete candidates, we looked at Poisson, Planck, Binomial and Geometric distributions. For

continuous distributions, we considered the normal, log-normal, truncated normal and Wei-

bull distribution. We evaluated the fit of continuous distributions by the overall shape, as the

data is discrete.

The Weibull distribution was chosen as a candidate for the extreme value distributions, as

shortest paths are calculated as minimums over paths. The normal distribution was chosen

due to the central limit theorem, i.e., the normal distribution as the limit of independent sam-

plings. The log-normal and truncated normal distributions were selected as a candidate as its

support can be limited to positive values—a sensible limitation for path lengths.

We estimated parameter fits for all distributions from many generated graphs. The para-

metrisation for the truncated normal was mostly indistinguishable from the produced nor-

mal distribution. Similarly, the log-normal distribution was transformed to mimic the

normal fit closely. Therefore, we removed the truncated and log-normal distribution as can-

didates to not overcomplicate the model. Representative examples for continuous fits are

shown in Fig 3.

Similarly, the results for the discrete distributions was not a good fit. Only the Poisson dis-

tribution produced a convincing fit for any graph but limited to graphs with k = 1. We did not

Fig 3. Fitted continuous distributions from an example dataset, which was created using 2000 nodes and 6 edges

per node. A lognormal and truncated normal fit were plotted identically to the normal distribution and were,

therefore, omitted.

https://doi.org/10.1371/journal.pone.0251458.g003
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test other discrete distributions as often no efficient maximum likelihood estimators exist or

are implemented. Representative examples for discrete fits are shown in Fig 4.

Finally, the results for the normal distribution produced good point-wise fits for graphs

with k > 1. The normal distribution fits were especially accurate for the core section of the

distribution, which is also consistent with findings of normally distributed path lengths in

other peer-to-peer networks [28]. The most significant deviation from the data could be

observed for the low end of the distribution: for distance 0 or 1. Fortunately, these values

can be fitted manually based on the parameters n, k, as the mass at a distance of zero

should be 1

n and the expected mass at the distance of one should be
kð2n� k� 1Þ

n2 ; i.e., the average

degree.

5.4 Discretization

To apply the normal distribution to our given problem, the resulting distribution needs to be

discretised, i.e., turned from a continuous distribution into a discrete one. The main goal is to

keep the properties of a probability distribution, i.e., the sum of all points not equal to zero

needs to add up to 1.

A valid discretization can be constructed based on the cumulative distribution function

(CDF) over intervals, capturing the full support of the distribution, e.g., f(x) = CDF(x)

As we fit the distribution based on the points of data, the natural discretisation can be

achieved by point-wise evaluation and re-normalisation of the result. Let PDF be the probabil-

ity density function, then a new probability mass function with evaluation points 0, 1, . . ., t
(the discrete equivalent to a PDF) is given by x 2 {0, 1, . . ., t}

ftðxÞ ¼
PDF ðxÞ

Pt
s¼0

PDF ðsÞ
:

Fig 4. Fitted discrete distributions from an example dataset, which was created using 2000 nodes and 6 edges per

node. Only the binomial estimation using the ceiling operator to discretize the parameters shows any resemblace to the

desired data.

https://doi.org/10.1371/journal.pone.0251458.g004
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This approach can easily accompany special values at certain points. Therefore, the full dis-

cretization of our normal distribution shall be:

f ð0Þ ¼
1

n

f ð1Þ ¼
kð2n � k � 1Þ

n2

f ðxÞ ¼
PDF ðxÞ

f ð0Þ þ f ð1Þ þ
Pt

s¼2
PDF ðsÞ

:

The maximum point t should be chosen in such a way, that the remaining error 1 − CDF(t)
� � is small enough for the given purpose.

5.5 Model parameter estimator

The previous section concluded that the distribution of shortest paths could be modelled using

a discretised normal distribution. Building upon this conclusion, we are further interested in

the parameters μ and σ2 of a normal distribution N ðm;s2Þ: The parameters of the normal dis-

tribution should only depend on the parameters of our network, the number of nodes n and

number of edges k. We are interested in functions M, S, with a small error err such that

m ¼ Mðn; kÞ þ err

s ¼ Sðn; kÞ þ err:

These are statistical estimators. To determine these, we fitted a large number of randomly

generated graphs and stored the resulting values for μ and σ. The determined functions M, S
are approximated using the functional equations:

Mðn; kÞ �
a ln ðbnÞ

egk
þ d ln ðZnÞ þ

z

egk
þ �;

Sðn; kÞ � a ln ðbnÞ þ
c

edk
þ e:

Here, the greek and fracture constants α to � and a through e are determined by least-square

fitting of the function to the acquired data. Through a fit of experimental data, we reached the

following approximate functions:

Mðn; kÞ �
0:595 log ð2:135nÞ

exp ð0:314kÞ
þ 0:341 log ð1:626nÞ þ

0:241

exp ð0:314kÞ
� 0:224;

Sðn; kÞ � 0:0345 log ð0:925nÞ þ
1:222

exp ð0:301kÞ
þ 0:189:

5.6 Landscape

We used the fitted parameters for random graphs to determine the behaviour of the parame-

ters. The ranges of the parameters depend on the size of the network n and the number of con-

nections created in each step k.

By splitting the dimensions based on n and k, an initial estimation is possible. The dimen-

sion dependent on k shows a behaviour proportional to 1

ek : The dimension dependent on n, on

the other hand, shows a behaviour proportional to log(n), a square root behaviour could be
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excluded as fitted parameters easily overestimated the data. A random selection of the dimen-

sional analysis is shown in Fig 5.

The estimation of values for σ show much more pronounced residues in the form of a saw-

tooth function. The forms can be recognised from the similarly shaped but smaller residues of

the μ estimations. The values of σ show to be within 0.3 to 0.7, even for large numbers of nodes

n, e.g., n = 1 000 000. Further, the values seem to jump rapidly and slowly descend, forming a

sawtooth pattern, which is hard to predict accurately. The pattern arises as additional nodes in

the network are more likely to create shortcuts than to increase path length until the overall

network diameter increases by one, steeply widening the distribution—and therefore increas-

ing the variance, i.e., σ. The likelihood of such an increase follows its own probability distribu-

tion, which we did not determine for this paper.

Fig 5. Datapoints for various graph sizes split by number of edges per node k and number of nodes n. μ estimate

fitted using 1

ek for the number of edges per node and fitted using log(n) for the number of nodes dimension.

https://doi.org/10.1371/journal.pone.0251458.g005
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5.7 Estimator models

Based on our one dimensional evaluation, we want to construct a two dimensional estimator

model M(n, k). Model candidates are based on possible combinations of our one dimensional

approximations, i.e., the partial derivatives are the derivatives of our observations:

@M
@n
�

d
dn

logðnÞ;

@M
@k
�

d
dk

1

ek
:

The constructed models have various constants, denoted by greek lower case symbols.

These constants are not shared between the models but were independently fitted. The models

are denoted by

M1ðn; kÞ ¼ a ln ðbnÞ þ
g

edk
þ �;

M2ðn; kÞ ¼
a ln ðbnÞ

egk
þ d ln ðZnÞ þ

z

egk
þ �;

M3ðn; kÞ ¼
a ln ðbnÞ

egk
þ �;

M4ðn; kÞ ¼
a ln ðbnÞ

egk
�
adk
egk
þ
z

eZk
þ
y ln ðinÞ
ðknÞln

þ n ln ðxnÞ:

We fit the parameters of the model based on our first dataset. The residuals of the fit param-

eters, i.e., the difference between the true value and estimation, shows a sawtooth form. This

arises as additional nodes likely create shortcuts until the overall diameter of the network

grows.

To evaluate the performance besides this observed error, we created a new independent

dataset. We measured the difference between the calculated values by our model and the actual

fitted parameters. This difference corresponds to the bias of the estimator, which is simply

referred to as bias. Fig 6 shows the distribution of the bias of our models for μ.

For the μ estimation, model M2 and M4 perform the best. Model M2 requires less parame-

ters than M4, i.e., it is simpler, therefore we prefer model M2.

For the estimation of σ, none of the models performs exceptionally well. In general, the

observed sigma values are small and within the range 0.3-0.7, even for graphs using one mil-

lion nodes. As no model performed exceptionally well, but also not exceptionally bad, we stuck

with the simplest model. The simplest model based on number of parameters is model 1. Fig 7

provides a discretization of an example prediction for a dataset based on 2000 nodes and 6

edges per node.

We can now use these values to compute concrete pt for a given network of n nodes using a

k-growing approach.

6 Privacy discussion

In this section, we investigate the privacy impact of the protocol. The main challenge for quan-

tification is the arbitrary topology and topology abstractions.

6.1 Model

Given a network of size n, we have a set of attackers A of size |A| participating in the network;

therefore, n − |A| is the number of all fully honest nodes. The value b ¼
jAj
n represents the
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fraction of attackers within the network, which is the probability of selecting an attacker when

selecting a node from the network uniformly at random. Lastly, any node has an expected

number of connections c> 1 to other nodes.

To locate a node in a flood-and-prune broadcast, an attacker node registers an incoming

message through one of its c connections. Given the knowledge of the topology, the attacker

can separate the network in c many sets of nodes, where any node is in the same set, if a broad-

cast from this node would reach the attacker via this connection. These sets are not necessarily

disjunct, as there may be multiple shortest paths between a node and the attacker. To find a

lower bound on the privacy effects, we assume the sets are disjunct, as this improves the posi-

tion of the attackers.

Fig 6. Boxplot of the bias distribution of the μ-estimator, using the four models, compared to the measured value.

https://doi.org/10.1371/journal.pone.0251458.g006

Fig 7. Discretization of an example dataset using 2000 nodes and 6 edges per node. The predicted normal

distribution is based on parameters estimated using model 2 for μ and model 1 for σ, with a pointwise discretization

and an interval discretization, using midpoint intervals.

https://doi.org/10.1371/journal.pone.0251458.g007
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The expected size of such a set for a single attacker node will be
n� jAj

c ; as an attacker would

not consider colluding attackers. For this model, we consider only untargeted attacks, where

attackers try to deanonymise any sending node, not a single particular node. In this case, the

ideal set of network nodes any attacker can distinguish based on a message is
n� jAj

c : Further,

ideal sets for attackers minimise the size of multiple observing attackers to the size of
n� jAj
cjAj .

Attackers can fully deanonymise a sending node once this size is below one. It follows that

attackers can correctly determine the location of a sender in this ideal setting, once more than

logc(n − |A|) attackers have received the message, as it holds, that

n � jAj
cjAj

� 1, jAj � logcðn � jAjÞ: ð6Þ

6.2 Spreading sub-protocol

Given the required number of attackers, we are interested in when this number is likely

reached during the spreading protocol. Nodes that select neighbours may select nodes that

already participate in the protocol, so the tree sub-graph resulting from participating nodes is

not complete.

If all nodes select their neighbours uniformly at random from the full set of network partici-

pants, this becomes a form of the coupon collectors problem in packs [31]. The coupon collec-

tors problem using packs describes the problem of receiving at least one of each coupon when

receiving coupons in packs of a given size. Here, the size of the packs is given by η, and each

network node represents a coupon.

Given a subset A of all coupons, the random variable Zℓ(A) is the number of drawings nec-

essary to obtain at least ℓ elements of A [31]. The expected value of reaching the required num-

ber of attackers Zlogcðn� jAjÞ
ðAÞ can be calculated using the results of Stadje:

EðZlogcðn� jAjÞ
ðAÞÞ ¼

n

c

 !
Xdlogcðn� jAjÞe� 1

j¼0

ð� 1Þ
dlogcðn� jAjÞe� jþ1

n

c

 !

�
n � jAj þ j

c

 !
jAj

j

 !
jAj � j � 1

jAj � dlogcðn � jAjÞe

 !

: ð7Þ

The number of drawings corresponds to the number of nodes participating in the protocol

before reaching the required number of attackers. To calculate a lower bound of the depth of

the η-adaptive diffusion dissemination tree at this point, we invert the calculation of the num-

ber of nodes in a complete tree.

Zlogcðn� jAjÞ
ðAÞ � 1þ ðZþ 1Þ

Xt� 2

i¼0

Zi ð8Þ

, t � log
Z

1 �
ðZlogcðn� jAjÞ

ðAÞÞð1 � ZÞ
Zþ 1

� �

þ 1 ð9Þ

Table 2 provides an overview of the evaluation of this function when 5% of the network is

colluding. It shows that for low values of η a significant depth can be reached, as four steps in a

network with an average degree of c = 8 results in a candidate pool for the true source for

approximately c4 = 84 = 4096. The likelihood of any of the candidate nodes being the true

source depends on the distribution f of Section 4.
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6.3 Virtual source sub-protocol

A node received additional information when chosen as the virtual source. An attacker is cho-

sen as the virtual source with probability

P½virtualsource 2 A� ¼
jAj

n � 1
: ð10Þ

In this formulation, a successful selection occurs when the virtual source is an attacker. This

is a simple Bernoulli trial, so the geometric distribution gives the expected number of trials

until a success occurs as

EðP½virtualsource 2 A�Þ ¼
n � 1

jAj
�

1

b
: ð11Þ

For a reasonable network size (n> 100) this value stays above 6 for fractions of attackers

below β = 0.166. This result is expected, as the process of virtual source selection mimics the

privacy-optimal process of the work by Bellet et al. [17] with a muting parameter of s = 0 and

earlier similar results.

7 Future work

There are various smaller improvements possible to increase the privacy or efficiency of the

protocol. First, instead of switching to a flood-and-prune from the last virtual source node, the

protocol could instead trigger the flood-and-prune broadcast from all leaf nodes. The last mes-

sage transmission message, see Algorithm 1, would instruct leaf nodes to start a flood-and-

prune process. This would reduce leaks of information during the flood-and-prune protocol

and improve the efficiency of the protocol.

To improve resistance against linkable broadcasts and to hinder an attacker in the first step,

the current timestep t may be randomised on initiating. This would also require the originator

to use a spreading message first, as the initial transmission would otherwise be special, as a

node should only receive the virtual source after receiving a spreading message.

The protocol has little guards against non-participation attacks and communication fail-

ures, which could be mitigated through retransmissions and time-outs. While allowing the

protocol to complete, these would still reduce the efficiency of the protocol in selective non-

participation attacks. As those do not prevent every connected node from receiving the mes-

sage and do not diminish the privacy results, we did not tackle these in this paper.

Lastly, a more extensive privacy analysis would benefit the protocol. Due to the lack of

topology information, the privacy analysis is limited in its applicability. A more accurate result

could be achieved for specific topologies or considering distributions over topologies.

Table 2. Expected tree depth for an attacker fraction of β = 0.05 before deanonymization of the virtual source.

n 100 1000 10000

η

3 4.3 3.9 7.8

5 2.5 2.7 2.7

10 1.6 1.7 1.9

https://doi.org/10.1371/journal.pone.0251458.t002

PLOS ONE Statistical privacy-preserving message broadcast for peer-to-peer networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251458 May 10, 2021 21 / 24

https://doi.org/10.1371/journal.pone.0251458.t002
https://doi.org/10.1371/journal.pone.0251458


8 Conclusion

In this paper, we transformed the adaptive diffusion protocol [19] into a realistic protocol for

current peer-to-peer networks. To achieve this, we remodelled the virtual source passing prob-

abilities in a more general way, based on the distance distribution of the underlying network

and improved the attacker model by removing information from protocol messages. Further,

we provide a privacy-friendly solution to solve these equations while smoothing out otherwise

unachievable states.

We analysed expected k-growing network topologies, which are similar to real-world peer-

to-peer network growth, for their distance distributions. The analysis showed the distances in

the networks to be approximately normally distributed. Lastly, we performed a parameter

analysis of the resulting normal distributions, showing that μ and σ of the normal distribution

can be approximated by a combination of logarithmic and inverse exponentials. The models,

based on the number of edges per node k and number of nodes n are:

mðn; kÞ �
0:595 log ð2:135nÞ

expð0:314kÞ
þ 0:341 log ð1:626nÞ þ

0:241

expð0:314kÞ
� 0:224

sðn; kÞ � 0:0345 log ð0:925nÞ þ
1:222

expð0:301kÞ
þ 0:189

All results are available online to evaluate and reproduce under a permissive open source

license: https://github.com/vs-uulm/eta-adaptive.
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