
Institut für Verteilte Systeme, Universität Ulm

Broadcast
Privacy for
Blockchains

Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für
Ingenieurwissenschaften, Informatik und Psychologie der Universität Ulm.

DAVID JOACHIM MÖDINGER
aus Schwäbisch-Gmünd, Deutschland, 2021

i

Amtierender Dekan: Prof. Dr.-Ing. Maurits Ortmanns

Gutachter: Prof. Dr.-Ing. Franz J. Hauck,

Institute of Distributed Systems,

Ulm University, Germany

Gutachter: Prof. Dr. Max Mühlhäuser,

Telecooperation Lab,

TU Darmstadt, Germany

Tag der Promotion: 12.07.2021

ii

Abstract

Public blockchains have reached high popularity among technically inclined people, layper-

sons and researchers alike. Similarly, privacy has gained much attention in the same circles.

This attention and high sensitivity of information transmitted in blockchains, lead more

and more blockchain-based systems, especially cryptocurrencies, to provide privacy for their

users. Popular approaches include ring signatures or zero-knowledge proofs to achieve un-

linkable payments within the blockchain.

However, these systems solely examine privacy by considering the blockchain and its em-

bedded transactions. The underlying peer-to-peer network of a public blockchain is rarely

considered. This leaves the dissemination of transactions open for privacy attacks, as the IP

address of the originator of a transaction can be mapped to their real-world identity.

In this thesis, we look into the important privacy aspects of broadcasting blockchain

transactions. We collect and analyse data of a large blockchain network and construct a

privacy-preserving latency estimator. Building on the insights gained from the analysis, we

combine dining-cryptographers networks with a secret sharing technique and layer a �ood-

and-prune broadcast on top, to provide enforced k-anonymity to network participants.

To increase the �exibility of this approach, we extend two established privacy protocols.

First, we extend a dining-cryptographers based group messaging protocol to transmit ar-

bitrary length messages. Further, we optimize the protocol for common cases, to improve

its performance for various environments, especially blockchain transaction dissemination.

As a performant intermediate privacy layer, we transform adaptive di�usion from a contact

graph protocol to a computer network protocol. We achieve this by changing the under-

lying network assumptions and the attacker model. We derive optimal forwarding proba-

bilities based on a statistical network model of unstructured peer-to-peer networks. These

two sub-protocols are combined in an intertwined layering approach to create 3P3, a �exible

privacy-preserving broadcast protocol.

Lastly, to manage the groups required for 3P3 and other proposed and common pro-

tocols, we propose Pixy. Pixy is a privacy increasing group creation scheme, allowing for

�ltering and testing of group participants to establish trust. The system allows for smaller

group sizes while maintaining privacy guarantees of previous systems, or better privacy for

same-sized groups.

The software, concepts, data and models in this thesis help researchers and developers

of privacy preserving network protocols. Developers can use 3P3, tuning its parameters to

the needs of their network. Researchers can build on the data, concepts and models to cre-

ate novel schemes and generalizations of our insights. This improves privacy for all users of

modern and future networks.

iii

iv

Zusammenfassung

In den letzten Jahren hat das interesse an Datenschutz und Blockchain Systemen deutlich

zugenommen. Sowohl Lauen, technisch interessierte als auch Forscher haben sich mit bei-

den Themen und ihren Anküpfungspunkten ausführlich befasst. Entwickler von Blockchain

Systemen haben verschiedene Ansätze, etwa Ringsignaturen oder Zero-Knowledge-Beweise,

genutzt um das Finanzgeheimnis in Blockchain Systemen zu stärken.

Die gewählten Ansätze beschränken sich in ihrer Funktionsweise jedoch auf die in der

Blockchain hinterlegten Informationen. Das Peer-to-Peer-Netzwerk, das einer ö�entlichen

Blockchain zugrunde liegend, wird selten berücksichtigt. Das Netzwerk ist jedoch anfällig

für Angri�e, welche den Datenschutz aushebeln. So ausgespähte IP-Adressen erlauben sogar

Rückschlüsse auf die wahre Identität des Nutzers.

Diese Arbeit beschäftigt sich mit Aspekte des Datenschutzes bei der Verbreitung von

Transaktionen durch Broadcasts. Wir sammeln und analysieren Daten in einem großen

Blockchain Netzwerk und konstruieren einen geheimen und unau�älligen Latenz-Schätzer.

Zudem kombinieren wir Dining-Cryptographers Netzwerke mit Shamir’s Secret Sharing,

für einen stärkeren Anonymitätsschutz.

Um die Flexibilität dieses Ansatzes zu verbessern, erweitern wir zwei bereits etablierte

Protokolle. Wir verändern und optimieren ein modernes Protokoll zur Gruppenkommu-

nikation, welches auf einem Dining-Cryptographers Netzwerk basiert. Dies erlaubt uns

beliebig lange Nachrichten zu versenden, sowie die nötige Leistung von Teilnehmern sub-

stantiell zu verringern.

Wir transformieren Adaptive Di�usion von in ein Netzwerkprotokoll. Um dies zu erre-

ichen, passen wir die Netzwerkannahmen und das Angreifermodell des Protokolls an. Hi-

erfür entwickeln wir ein statistisches Netzwerkmodell von Peer-to-Peer-Netzwerken. Diese

Veränderungen erlauben den Einsatz von Adaptive Di�usion als Zwischenschicht zur Er-

höhung der Datensicherheit einzusetzen und dabei die Leistungseinbußen gering zu halten.

Zur Erstellung der für 3P3 nötigen Gruppen, entwickelten wir Pixy,w elches die Ver-

trauensbasis zwischen Teilnehmern durch Filter und Tests während der Gruppenerstellung

verbessert. Dies ermöglicht kleinere, und damit e�zientere, Gruppen unter Beibehaltung

der Datenschutzgarantien früherer Systeme.

Die entwickelten Konzepte, Software, Daten und Modelle in dieser Arbeit helfen Forsch-

ern und Entwicklern von Netzwerkprotokollen den Datenschutz für Netzwerkteilnehmer

zu verbessern. Software Entwickler können 3P3 verwenden und dessen Parameter auf die

Bedürfnisse ihres Netzwerks abstimmen. Forscher können auf den Daten, Konzepten und

Modellen aufbauen, um neuartige Schemata und Verallgemeinerungen unserer Erkennt-

nisse zu erstellen.

v

vi

Publications

Some earlier versions of the material presented in this thesis have previously been published

in the following publications:

Reviewed
[1] H. Kopp, D. Mödinger, F. J. Hauck, F. Kargl, and C. Bösch. “Design of a Privacy-

Preserving Decentralized File Storage with Financial Incentives”. In: Proceedings of
IEEE Security & Privacy on the Blockchain (IEEE S&B) (affiliated with EUROCRYPT
2017). IEEE, 2017.

[2] D. Mödinger, J. Dispan, and F. J. Hauck. “Shared-Dining: Broadcasting Secret Shares

using Dining-Cryptographer Groups”. In: Accepted at 21st International Conference
on Distributed Applications and Interoperable Systems (DAIS). 2021.

[3] D. Mödinger, N. Fröhlich, and F. J. Hauck. “Pixy: A Privacy-Increasing Group Cre-

ation Scheme”. In: 5th International Conference on Network Security (ICNS). 2020.

[4] D. Mödinger and F. J. Hauck. “3P3: Strong Flexible Privacy for Broadcasts”. In: 4th
International Workshop on Cyberspace Security (IWCSS 2020). 2020.

[5] D. Mödinger, H. Kopp, F. Kargl, and F. J. Hauck. “A Flexible Network Approach

to Privacy of Blockchain Transactions”. In: Proc. of the 38th IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS). IEEE, 2018.

[6] D. Mödinger, J.-H. Lorenz, and F. J. Hauck. “n-Adaptive Di�usion for k-Growing

Networks”. In: Submitted to Plos One. 2021.

[7] D. Mödinger, J.-H. Lorenz, R. W. van der Heijden, and F. J. Hauck. “Unobtru-

sive monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer

network”. In: PLOS ONE 15.12 (Dec. 2020), pp. 1–21.

Unreviewed
[8] D. Mödinger and F. J. Hauck. Bitcoin Network Transaction Inv Data with Java Times-

tamp and Originator Id. https://doi.org/10.5281/zenodo.2547396. Jan.

2019.

[9] D. Mödinger, A. Heß, and F. J. Hauck. “Arbitrary Length k-Anonymous DC Com-

munication”. In: (2021). arXiv: 2103.17091 [cs.NI].

vii

https://doi.org/10.5281/zenodo.2547396
https://arxiv.org/abs/2103.17091

viii

Contents

I Preliminaries 1

1 Introduction 3

2 Background 7

3 Privacy Protocols 15

II 3P3: Strong Flexible Privacy 25

4 Overview 27

5 Phase I: Arbitrary Length k-Anonymity 31

6 Phase II: η-Adaptive Di�usion 39

7 Security and Privacy 59

8 Performance 65

III Privacy Extensions 73

9 Overview 75

10 Unobtrusive Monitoring 77

11 Threshold Cryptography for k-Anonymous Broadcasts 95

12 Pixy: Privacy-Increasing Group Creation 107

IV End 117

13 Conclusion and Outlook 119

ix

x CONTENTS

Part I
Preliminaries

1

Chapter 1

Introduction

Cryptocurrencies and blockchains have been popular for years, not only in research and in-

dustry but also for the general population. This phenomenon went as far as many people of

varying technical pro�ciency investing their money in cryptocurrencies hosted by blockchains.

Many blockchains contained sensitive data of their users in unprotected and unprotectable

forms. Such data contains information on purchasing behavior, credit balances, and how the

money was acquired [77, 95]. Many new cryptographic applications came to life to protect

this sensitive information. Approaches to achieve unlinkable payments include the use of

ring signatures [1, 86, 87] and zero-knowledge proofs [20, 79]. Even already existing blockchain

systems, such as Bitcoin were augmented with privacy-enhancing mechanisms [26, 97].

However, these systems focus solely on privacy on the persisted blockchain, as every user

can acquire and inspect this data. This publicly available data has been intensively investi-

gated even for strong privacy-protected blockchains such as zcash [63].

Some researchers investigated the dissemination of transactions within the peer-to-peer

network [21, 22, 67]. They recognized a lack of network privacy for blockchain systems,

leading to the development of protocols to protect the network-layer participants. Dande-

lion [24] tackles some of the issues on the network layer for Bitcoin. Unfortunately Dan-

delion is weak against certain attacks. Monero [87] adopted a variant of the onion routing

protocol I2P [34] called Kovri. Kovri provides strong privacy but is unsuited for a general

broadcast abstraction.

Thesis Structure and Contributions
To �ll the gap left by these systems, we propose new approaches around broadcasting mes-

sages in peer-to-peer networks. To clearly outline the problem, we give an in-depth descrip-

tion of the background of this thesis in Chapter 2. Building on this background, Chapter 3

gives an overview over various privacy preserving protocols, including dining-cryptographers

networks and Dandelion.

The second part of this thesis details 3P3, a three-phase privacy-preserving broadcast pro-

tocol. Chapter 4 describes the design and core principles of 3P3, which are �exible parameters

for various environments, a strong base protocol, based on a dining-cryptographers network,

and an e�cient topological privacy phase for enhanced protections against common attacks.

3P3 allows network developers to tweak the network parameters based on their performance

and privacy requirements. The following chapters provide details on its design, privacy and

performance.

3

4 CHAPTER 1. INTRODUCTION

Chapter 5 provides and discusses the necessary changes to a modern k-anonymous dining-

cryptographers network to allow for arbitrary-length messages, at the cost of an additional

transmission. To make arbitrary length messages possible, we introduce a message-length

establishment and a privacy-preserving dissemination of validation seeds. These seeds are

required to secure the transmission of the actual message. The proposed changes make the

protocol suitable for a larger number of environments, such as the dynamic environment of

blockchain broadcasts. Furthermore, various optimizations increase the performance of the

protocol, which we show through a proof-of-concept implementation.

Chapter 6 provides a transformation of the contact-graph privacy-preserving broadcast-

ing protocol adaptive di�usion to a network protocol. Adaptive di�usion uses attacker and

network models unsuitable for computer networks, requiring changes to provided informa-

tion during a protocol run, as well as di�erent network assumptions. We generalize the net-

work model from a regular tree to a random graph. We derive optimal forwarding probabil-

ities for the resulting protocol, based on the distance distribution of nodes in the network.

Further, we show when the optimal result can not be reached and provide an algorithm to

compute the closest reachable probabilities. Lastly, we analyze the distribution of shortest

paths in a simpli�ed network modeled after the networks used by many public blockchain

systems and provide a short overview over alternative distance distributions in common peer-

to-peer networks. These distributions enable e�cient forwarding probabilities for maximum

privacy in the resulting protocol.

Chapter 7 provides the security and privacy analysis of 3P3. We show that 3P3 will suc-

cessfully disseminate a message throughout the network, as long as the honest nodes form

a connected sub-graph and enough honest nodes are available for a dining-cryptographers

group. We analyze the privacy of 3P3 by considering di�erent attacker models. First, we con-

sider a global passive attacker, which can observe messages sent between nodes. We consider

colluding nodes within the dining-cryptographers group as a second possible attacker. Lastly,

we discuss the increased bene�ts of adaptive di�usion while combating a honest-but-curious

attacker, which are common in public networks.

Chapter 8, on the other hand, provides and extensive performance analysis for 3P3. The

chapter contains a theoretical discussion for the expected bandwidth consumption, a sim-

ulated comparison with statistical privacy-preserving broadcasting protocols and a perfor-

mance evaluation of the proof-of-concept implementation of 3P3. We show that 3P3 per-

forms well compared to statistical privacy measures proposed for blockchains in a simulated

environment, with expected latencies for a full network broadcast around one second. Fur-

ther, we show that the most performance-critical parts of 3P3, the dining-cryptographer net-

work, performs well in a proof-of-concept implementation. The evaluation is performed

using a reproducible setup based on container deployments with limited link capacities.

The third part of this thesis discusses additional contributions in the space of privacy-

preserving broadcast technologies. Chapter 9 gives a short overview of the structure.

Chapter 10 details the collection of data within the Bitcoin network. We collected trans-

action dissemination data from multiple locations around the world spread out over weeks,

to ensure time and space independence of any analytic results. This data provides a basis for

evaluation of protocols and modeling of Bitcoin network behavior. The analytic results give

a frame of reference for the performance results of 3P3, showing a possible reduction of 80%

in dissemination times by using 3P3. We generalize this model of Bitcoins network behavior

and build an estimator of future latencies based on local observations with little data from

the network. The model captures the trend of the noisy real-world data well, but is limited

to Bitcoins unique implementation and unable to reliably capture short time misbehavior or

anomalies due to its abstraction.

In Chapter 11, we propose a novel protocol fusing dining-cryptographers networks and

5

Shamir’s secret sharing technique. This system aligns the incentives of the source of a broad-

cast and participating nodes, by requiring at least k − 1 participants to broadcast their mes-

sage shares before any participant can read the disseminated message. The fusion enforces

k-anonymity on the scale of the whole network at the cost of reduced security guarantees

within the group. The system provides an alternative to punitive misbehavior correction, as

it is used in 3P3, and can be used as an alternative protocol.

The protocols using dining-cryptographers groups require groups on the network layer.

Chapter 12 describes Pixy, a privacy increasing group creation scheme. The expected privacy

guarantees of a group creation scheme are based on the peer-selection process. Pixy improves

on a previous random selection by requiring a two-phase veri�cation. The �rst phase is based

on pre-established trust information, either from globally known sources, e.g., based on IP

addresses, or previous protocol runs. A second phase incorporates resource testing of partic-

ipants, to harden the system against single entities pretending to be multiple participants.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we introduce the notation, scenario and required background information.

The background encompasses blockchain systems, probability distributions and the notion

of privacy.

2.1 Notation

Table 2.1 provides an overview of less common notations used throughout this thesis.

Term Meaning

x =∼ U(a, b) Choose a random real number uniformly with x ∈ [a, b].
i =∼ U{a, b} Choose a random integer uniformly with a ≤ i ≤ b.

E =∼ Un{S} Select n distinct elements from S uniformly at random.

G = (E, V) Graph G consisting of a set of vertices V and edgesE.

G All participants of a group of network participants.

N The set of neighbors chosen in our modi�ed di�usion.

η = |N | Size ofN .
H(x) Function to compute the hash of element x.

process(m) Call application logic to process the given messagem.
Cr(x) Commitment on value x, blinded by random factor r.
{X}i ValueX encrypted under the public key of i.

Table 2.1: Notation used in this thesis.

2.2 Scenario

Throughout this thesis, we work with unstructured peer-to-peer networks. An unstructured

peer-to-peer network does not determine the connections of its participants in an identi�ca-

tion space, i.e., participants are free to connect to any other participant.

Nodes participating in the network usually use a gossip protocol to disseminate known

participants. Each node keeps a list of known participants, either from direct contact, or

7

8 CHAPTER 2. BACKGROUND

addresses they received via the gossip protocol. If they require a new connection, e.g., because

a connection drops, they can connect to an arbitrary participant from the list.

The network provides a list of publicly known participants of the network, either through

�xed addresses or a naming service. These nodes are the entry points of new participants. A

new participant connects to an entry node, receives a list of network participants and closes

the connection, to prevent overload of entry nodes. The list is then used to create new net-

work connections to fully participate in the peer-to-peer network.

The maintained number of connections is often �xed in the client, i.e., a node only cre-

ates 8 outgoing connections. However, nodes accept additional incoming connections, lead-

ing to older nodes having more connections than new nodes.

Network Assumptions
The security functionality of the protocols we propose in this thesis requires the ful�llment

of some assumptions about the underlying peer-to-peer network. For the remaining chap-

ters, we assume that the underlying network has no multiple edges or loops and that the

network remains connected, even after removing all malicious or faulty nodes. Otherwise,

the network could be partitioned by malicious nodes, preventing participants of one parti-

tion from communicating via the network with any participant of the other partition. No

network protocol would be able to ensure delivery to all nodes under these circumstances.

Known properties of connectedness [58, Ch. 4] can consider a given rate of attackers for

network creation, ensuring networks employing a strategy for creation will stay connected,

even though a given fraction of nodes won’t forward messages. Therefore our assumption is

warranted and not a strong restriction on the underlying network.

Channels between nodes must be authenticated, encrypted and integrity protected. Such

a channel can be realized using modern cryptographic schemes, e.g., via mTLS. Further, we

require a public-private key pair for encryption with shared public keys among the group as

well as an agreed-upon ordering within any established groups, e.g., ordered by public keys.

Unless noted di�erently, we assume the network underlying our protocol takes care of

basic network functions and management operations, e.g., re-establishing interrupted con-

nections, group join and leave operations, authentication and encryption. These operations

can be cleanly separated from our protocols and can be provided by existing peer-to-peer

networking implementations.

2.3 Blockchains
Bitcoin [84] is the �rst implementation of a so-called blockchain: A distributed data struc-

ture of time-stamped transactions between an indeterminate amount of users. To identify

the users of the blockchain protocol, Bitcoin uses asymmetric cryptographic keys. Identi-

ties are denoted by public keys, and possession of the secret key is proven by cryptographic

signatures.

The core elements of a blockchain are blocks and transactions. A transaction is an asset

transfer. It can have multiple inputs and outputs. An input is a proof of ownership of a

previous output, usually a signature proving the possession of the key used for the output.

Inputs can only be used once for a transaction, if two transactions exist referencing the same

output, only one can be valid. To decide which transactions are valid, the blocks and mining

process are used.

A block is an accumulation of transactions, which also contains a hash of the previous

block, forming a chain through these references. The blocks represent the consensus of the

2.4. COMMITMENTS 9

system on which transactions are valid. To form a distributed consensus, a mechanism called

proof-of-work is used in Bitcoin and most other blockchains [51]. This proof-of-work forces

the participants that build a block to spend an amount of resources proportional to the avail-

able resources in the system. The required resources usually lead to a constant average rate of

block creation While competing blocks, i.e., blocks containing similar but not identical sets

of transaction, can be created, participants will continue the longest chain. The contribution

of a majority to the longest chain forms a probabilistic consensus on all valid transactions,

i.e., the probability of a block being overruled by a competing faster growing chain shrinks

exponentially based on the di�erence in length of the competing chains.

Permission-less blockchains allow everyone to participate. New blocks and transactions

need to be transmitted to all participants within such a permission-less blockchain. As, in

principle, everyone can participate, the dissemination protocol is especially important.

2.4 Commitments
The protocols presented in this thesis make use of commitments. A commitment Cr(x)
over some data x is a unique, irreversible identi�er. GivenCr(x) and r, any user can validate

thatCr(x) was created using x.
Commitments possess two core properties: They are hiding and binding on the data x.

Hiding ensures that the committed data x can not be extracted, only given the commitment

Cr(x). Binding, on the other hand, prevents a committed party from �nding values x′, r′,
such thatCr(x) = Cr′(x

′), revealing a di�erent value than they committed to.

We make use of the well known Pedersen commitments [90] over an elliptic curve, which

ful�ll this property e�ciently. Given two pointsG,H on the elliptic curve, a data itemx and

a random value r the commitment is given by

Cr(x) = xG+ rH.

Pedersen commitments are homomorphic regarding addition. Given two commitments

Cr1(x1) andCr2(x2), it holds that:

Cr1(x1)⊕ Cr2(x2) = Cr1+r2(x1 + x2).

Intuitively, if data is combined, the commitments on this data can be combined as well,

enabling some of the security protocols within this thesis. For our implementations, we make

use of the standard elliptic curve Secp256k1
1
, therefore, commitments are 32 bytes in size.

Note that we only commit to 31 bytes of data, due to the curve modulus.

2.5 Probability Distributions
For this thesis, we revisit some statistical fundamentals in the form of probability distribu-

tions, as we use them to model network latency distributions and the number of neightbors

of network participants in this thesis. Probability distributions can be separated into two cat-

egories: discrete and continuous distributions [61, 88]. A discrete probability distribution is

one that only takes a countable set of values. Continuous distributions, on the other hand,

have a support (points where the probability density function is not zero) of uncountable

size, e.g., the real numbers of zero to in�nity. In quite a few cases, continuous distributions

might be more useful to model a discrete problem. Using a continuous distribution requires

transforming the result back into the discrete space.

1
See https://en.bitcoin.it/wiki/Secp256k1.

https://en.bitcoin.it/wiki/Secp256k1

10 CHAPTER 2. BACKGROUND

Normal Distribution
One of the most famous representatives of the continuous distributions is the so-called nor-

mal distribution, designated byN (µ, σ2),whereµ represents the expected value andσ2
the

variance of the distribution. The parameters are also known as scale and shape in di�erent

contexts. The probability distribution is de�ned by its probability density function (PDF)

PDFN (x) =
1

σ
√
2π
e−

1
2 (
x−µ
σ)2 .

The cumulative distribution function (CDF), the integration of the PDF, of the normal

distribution is often written as

CDFN (x) =
1

2

[
1 + erf

(
x− µ
σ
√
2

)]
=

∫ x

−∞
PDFN (t)dt

where erf represents the error function de�ned by

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

The support, i.e., non zero values of the PDF, of the normal distribution is (− inf,+ inf),
i.e., all of the real numbers R. As this can be problematic for some applications, there exists

the truncated normal distribution, limiting the distribution to some interval [a, b] ⊂ R.
This requires re-normalization of the result, i.e., ensuring that

∫ + inf

− inf
PDF(x)dx = 1, as

the integral of the PDF of the normal distribution over [a, b] is smaller than 1.

Lognormal Distribution
The lognormal distribution is a transformation of the normal distribution: The logarithm

of the random variable is normally distributed. In other words, given a normally distributed

random variable X , then eX follows a lognormal distribution. Therefore, the lognormal

distribution has a support of (0,+ inf).
The parameters of a lognormal distribution are usually given asµ andσ of the underlying

normal distribution. Sometimes a third parameter is used, γ, sometimes also called location,

which represents a shift of the distribution and results in the following probability density

function:

PDFlnN(x) =
1

(x− γ)σ
√
2π
e−

1
2 (

ln(x−γ)−µ
σ)2 .

Parameter estimation of such a shifted lognormal distribution is more complex [57] than

estimating parameters for a two-parameter distribution. We will address this in Section 10.6.

Weibull Distribution
Lastly, we would like to mention the Weibull distribution. The Weibull distribution is part

of the extreme value distributions family, modeling maxima or minima, with a support of

[0,+ inf).As such, this distribution arises when combining various other random variables

using extreme-value functions, i.e., the minimum of multiple random variables.

The Weibull distribution has two parameters, the scaleλ and shape k. For further details

on the Weibull distribution, we refer to established standard works on distributions [88]. For

completeness, the probability density functions is given by

2.6. PRIVACY, UNLINKABILITY AND K-ANONYMITY 11

PDFWB(x) =
k

λ

(x
λ

)k−1
e−(

x
λ)
k

.

Distribution Analysis and Percentiles
After modeling a problem using a distribution and determining the parameters of the dis-

tribution, we are interested in conclusions drawn from this model. Within this thesis, one

application of distributions is a model of dissemination latency, i.e., the distribution models

the fraction of participants in a network receiving a broadcast message at any given time. The

cumulative distribution function represents the fraction of the network that has received the

message so far. Answering the question of "How long will it take for the message to reach

50% of the network" involves inverting the cumulative distribution function. If the inversion

is limited to the equidistant parts of 0 to 100, these are called percentiles: Let p ∈ [0, 1], the

percentile 100p is then calculated by solving CDFlnN(x) = p for x.

For the normal and lognormal distribution, the cumulative distribution functions are

not analytically solvable. We require an e�cient way to produce analysis results for a log-

normal distribution in later chapters of this thesis, fortunately it can be e�ciently approx-

imated. A simple way to approximate the CDFlnN of the lognormal distribution is given

by [11, p. 7.1.27], with an error |ε(x)| ≤ 5× 10−4, as:

CDFlnN(x) =
1

2

[
1 + erf

(
ln(x)− µ

σ

)]
≈ 1− 1

2× (1 + α1s+ α2s2 + α3s3 + α4s4)4
,

s =
ln(x)− µ

σ
.

Where the values for αi are constants given by α1 = −0.278393, α2 = 0.230398, α3 =
0.000972 and α4 = 0.078108. This accuracy is su�cient for the application within this

thesis. For other applications there are methods with higher accuracy, i.e., lower error, avail-

able, at the cost of more mathematical operations.

2.6 Privacy, Unlinkability and k-Anonymity
Privacy is the notion of being able to selectively release information. In the context of this

thesis, this is mainly accomplished through unlinkability [91]. Unlinkability in our given

scenario prevents an answer to the following question: Given a set of network participants

and a message that was disseminated by them, which participant created the message? In

other words, the message and its creator can not be linked.

Anonymity Set
There are various established measures for privacy. In this thesis, we will focus on the notion

of an anonymity set. Given the previous task of identifying the original sender of a message,

the anonymity set is the smallest set of network participants, which can not be excluded as

the potential sender.

In other words, all possible senders together form the anonymity set for a given message.

A participant is said to be anonymous in regards to a given anonymity set, as they can not be

identi�ed within this set.

12 CHAPTER 2. BACKGROUND

k-Anonymity
While the maximum possible anonymity set in a network protocol is that of all participants -

as long as participation can be detected - it can not be e�ciently realized. However, for many

applications it is su�cient to guarantee a much smaller size to provide reasonable privacy. If

the size of the anonymity set is guaranteed to have at least k participants, we call the protocol

k-anonymous [12]. For a suitable value of k, e.g., k > 10 [80], a participant is anonymous

for most practical purposes.

2.7 Problem: Flood-and-Prune Privacy
The most basic way to broadcast a message throughout a network is a �ood-and-prune ap-

proach: When a message is encountered for the �rst time, share it with all neighbors, other-

wise drop the message. A �ood-and-prune broadcast is easy to implement, resilient against

attacks and has low dissemination latency. Unfortunately, the protocol does not provide any

privacy guarantees.

The lack of privacy guarantees can be exploited by various kinds of attackers. One attack

exploits the symmetry in propagation of message dissemination: A message is forwarded and

similar speeds in all directions. See Figure 2.1 for an example.

Figure 2.1: A broadcast in progress. Light red nodes already received the broadcast, while

dark blue nodes did not. The likely originator is marked (L). [5] © 2018 IEEE

Attackers can determine the likely origin by distributing unobtrusive nodes throughout

the network and recording the arrival time of the received messages [21]. The likely origin

can be reconstructed by the distance from the measurement nodes, i.e., the node that is at

the center of the sub-graph of nodes that already received the message, also known as the

Jordan center. This attack works even for so called unreachable nodes [76], i.e., nodes that

refuse incoming connections, which are harder to deanonymize.

2.8. SUMMARY 13

2.8 Summary
In this chapter we introduced the primary application domain of this thesis, blockchains, as

well as models for the network’s underlying public blockchains. We revisited probability dis-

tributions, with a focus on the normal and lognormal distribution. Lastly, we introduced the

measure of privacy, k-anonymity, to quantify unlinkability between a sender and a message.

With these tools and basics, we can now dive deeper into the matter of privacy preserving

network protocols.

14 CHAPTER 2. BACKGROUND

Chapter 3

Privacy Protocols

In this chapter, we discuss existing systems to provide privacy for blockchain transactions on

the network layer. The introduced systems provide a basis to develop novel protocols con-

forming to our expectations and provide valuable comparisons for performance and privacy

properties. We loosely separate the protocols into topological, or statistical, mechanisms,

which provide e�cient dissemination but weak privacy guarantees and cryptographic sys-

tems that can withstand stronger attackers but are less e�cient.

First, we introduce basic dining-cryptographers networks, the k-anonymous message trans-

mission protocol and adaptive di�usion, as we extend these protocols throughout the thesis.

Further, we give an overview over alternative privacy protocols, which we use as comparison

for the results obtains in this thesis.

3.1 Dining-Cryptographers Networks

The base protocol of the dining-cryptographers (DC) network by Chaum [32] allows for un-

conditional sender untraceability for sending a single bit. This protocol has been extended

in various ways to send longer messages. One possibility is the sum-modulo-q-based imple-

mentation, given by Algorithm 1. In this more general form, the protocol allows a single

participant to share a message in an unlinkable way. The protocol requires secure channels

to communicate and an upper limit for message lengths `, all shorter messages will be padded

to reach this length.

Given a �xed-length message, e.g., by a modulus for modular arithmetic, all participants

gi decide on their messagemi to share. If participants do not intend to send a message, they

will prepare mi = 0. Only one participant is allowed to share a message mi 6= 0 for a suc-

cessful transmission, otherwise the resulting message will be unreadable, i.e., a combination

of all transmitted messages. Each participant gi creates k random shares si,j from its message

mi, so thatmi =
∑k
j=1 si,j and shares si,j with participant gj , whereas si,i remains with

gi. All participants combine every share they receive and share the combination with all other

participants. Therefore, all participants will receive an aggregate of all shares produced by ev-

ery other participant and can calculate the aggregation of all messages, which corresponds to∑
imi.

15

16 CHAPTER 3. PRIVACY PROTOCOLS

Algorithm 1 Dining cryptographers protocol using addition modulo q.

Input: Messagemself of length `
Environment: Participants gi with i ∈ {1 . . . k}, including the executing node gself , mes-

sage length `

X =

{
mself ifmself not empty

0 else

for i ∈ {1 . . . k} do

sself,i =

{
∼ U{0, 2` − 1} if i < k

X −
∑k−1
j=1 sself,j if i = k

end for
Send sself,i to gi : i 6= self
Wait until gself received all sj,self
Sself =

∑k
j=1 sj,self

{Note: This sum includes sself,self which was not sent}

Broadcast Sself

Wait until gself received all Sj
return X̂ =

∑
j Sj

This simple implementation is information-theoretically secure against identifying the

originator of a message, but it is not secure against interruption. The security is based on the

combination of random bitstrings, as all messages are transmitted via all other participants.

To identify the origin, all other participants must combine their shares received from the

suspected origin. A participant can use a random message to create a collision with other

messages, preventing other participants from reading the message, whereas the participant

itself can actually retrieve the sent message. Further, with a message complexity ofO(n2) a

dining-cryptographers network does not scale well to high numbers of participants.

There are various ways to implement dining-cryptographers networks. Applying the

XOR operation instead of addition mod q or di�erent structures leads to a similar algorithm

with the same guarantees. Algorithm 2 shows a variant of the original algorithm [32], as we

use it in Chapter 11. Both versions are helpful for modeling di�erent types of extensions,

e.g., when combining with messages homomorphic under XOR, the XOR variant is more

useful.

Algorithm 2 Dining-Cryptographers Protocol using XOR, the resulting message mout =⊕
k=1...nmk is the same across all participants. [2]

Input: Messagemself of length `
Environment: Participants gi with i ∈ {1 . . . k}, including the executing node gself

Establish random secrets sself,i of length `with each member gi, i 6= self
Mself = mself ⊕

⊕
i=1...n,i 6=self sself,i

SendMself to gi ∀i ∈ {1 . . . n} \ {self}
ReceiveMi from gi ∀i ∈ {1 . . . n} \ {self}
mout =

⊕
i=1...nMi =

⊕
i=1...n

(
mi ⊕

⊕
j=1...n,j 6=i si,j

)
return mout

3.2. K-ANONYMOUS TRANSMISSION PROTOCOL 17

3.2 k-Anonymous Transmission Protocol

As noted before, DC networks do not scale well with the number of participants and can be

prevented from making progress by malicious participants. To create a practical application

despite these weaknesses, von Ahn et al. [12] realized a sender- and receiver-k-anonymous

protocol for message transmission. Note that this is no longer a broadcast protocol. Instead

it relies on assigning participants to a number of disjoint groups with only k members each.

To achieve the sender-k-anonymity, the message is �rst shared anonymously within a source

group Gs, using a dining-cryptographers variant. Afterwards, all participants of this group

Gs send the message to all participants of the target groupGt.

Gs Gs Gt

WithinGs Gs toGt

Figure 3.1: Visualization of the two parts of the protocol by von Ahn et al., sharing within

the group and the �nal transmission between the source groupGs and target groupGt. [9]

As the message does not need to reach all participants, the application to groups of sizes

much smaller than all participants n comes naturally. The protocol also builds upon other

improvements [52], especially to identify cheaters through commitment schemes. Thus, this

new protocol deals with two severe weaknesses, even though it changed the use-case.

In the protocol by von Ahn et al. the dining-cryptographers phase shares an array of 2k
slots, where each slot can consist of a message of �xed size and a non-zero group identi�er,

identifying the receiver group. Each slot sums up to a total, �xed length of `. To present

the protocol, we will split the protocol into multiple phases, based on the presentation in the

original paper [12]. These phases are the commitment phase, the sharing phase, the broadcast

phase, result computation and, lastly, the transmission phase.

In the commitment phase (see Algorithm 3) participants prepare their message in a ran-

dom slot and set all other slots to zero. Further, they create commitments on all messages and

broadcast these to the group. The commitments allow for a blame protocol to identify ma-

licious actors after detecting misbehavior: if more than half of all slots are occupied, the one

or multiple perpetrators can be uncovered. If a sender detects a collision, i.e., their message

is not correctly represented in the result, without less than half of all slots being occupied, it

is deemed an accident instead of malicious action. Note that all arithmetic is performed over

Zq or, for commitments, the respective commitment structure.

18 CHAPTER 3. PRIVACY PROTOCOLS

Algorithm 3 Commitment phase of the k-anonymous message transmission protocol.

Input: Messagemself , target groupGt
Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

slot length `
Slot=∼ U{0, 2k − 1}

X[i] =

{
(mself , Gt) if i = Slot ∧Gt 6= 0

(0, 0) else

for t ∈ {1 . . . 2k} and i ∈ {1 . . . k} do

sself,i[t] =

{
∼ U{0, 2` − 1} if i < k

X[t]−
∑k−1
j=1 sself,j if i = k

rself,i[t] =∼ U{0, 2` − 1}
Compute Ĉself,i[t] = Crself,i[t](sself,i[t])

end for
Broadcast {Ĉself,i[t] : i ∈ {1 . . . k}, t ∈ {1 . . . 2k}}

This results in a protocol with more overhead compared to basic dining-cryptographers

networks but provides fairness and robustness in malicious environments. It also allows for

the transfer of multiple messages within one round. Algorithm 4 is called the sharing round,

where all computed information is shared. Algorithm 5, the local broadcast round, is the

�nal group internal communication and allows all participants to reconstruct the messages

with Algorithm 6. These Algorithms 3 to 6 are just the extension of the second half of Algo-

rithm 1 by the validation and dissemination of commitments. Finally, in Algorithm 7 each

participant transmits the received message to every participant in the receiving group.

Algorithm 4 Sharing phase of the k-anonymous message transmission protocol.

Input: ∀i ∈ {1 . . . k} : sself,i, rself,i of Algorithm 3

Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

commitments Ĉi,j [t]
for gi ∈ G \ {gself} do

Send {(rself,i[t], sself,i[t]) : t ∈ {1 . . . 2k}} to gi
Receiving node gi validates thatCrself,i[t](sself,i[t]) = Ĉself,i[t]

end for

Algorithm 5 Broadcast within the group of the k-anonymous message transmission proto-

col.

Input: ∀j ∈ {1 . . . k} : (rj,self [t], sj,self [t]) transmitted by others in Algorithm 4

Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

commitments Ĉi,j [t]
Wait until gself received all pairs (rj,self [t], sj,self [t])
Rself [t] =

∑
j rj,self [t]

Sself [t] =
∑
j sj,self [t]

Broadcast {(Rself [t], Sself [t]) : t ∈ {1 . . . 2k}}
Everyone checksCRself [t](Sself [t]) = ⊕j Ĉj,self [t]

3.3. ADAPTIVE DIFFUSION 19

Algorithm 6 Result computation of the k-anonymous message transmission protocol.

Input: ∀j ∈ {1 . . . k} : (Rj [t], Sj [t]) broadcasted by others in Algorithm 5

Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

commitments Ĉi,j [t]
Wait until gself received all pairs (Rj [t], sj [t])
R[t] =

∑
j Rj [t]

X[t] =
∑
j Sj [t]

Everyone checksCR[t](X[t]) = ⊕i,j Ĉi,j [t]
return X

Algorithm 7 Transmission phase of the k-anonymous message transmission protocol.

Input: X, result from Algorithm 6

Environment: The executing node gself , known groups of network participants Gi =
{gj,i : j ∈ {1 . . . k}}
for (mi, Gi) ∈ X do

if Gi 6= 0 then
Sendmi to all members ofGi

end if
end for

The protocol by von Ahn et al. provides a notion of fairness: during honest execution,

each participant has a probability of p > 1
2 for successful transmission. The protocol was

described by von Ahn et al. with an extension to ensure everyone used at most one slot,

i.e., the protocol run was fair, using a zero-knowledge proof. This extension is not shown

in the previous algorithms. The proof is triggered when more than half of all slots are used

and works in the following way: A suspected participant, the prover within the protocol,

creates a permutation of all slots and a second set of commitments. Other participants, the

veri�er within the zero-knowledge protocol, chose to either have the prover open all but one

of the permuted commitments, i.e., showing that at most one commitment was not zero.

Alternatively, the veri�er may choose to have the prover reveal the permutation and prove

that they can open each corresponding commitments to the same value.

Lastly, von Ahn et al. provide an additional modi�cation, which was not included in the

previous description. To handle selective non-participation, e.g., refusing communication

with a single participant, all nodes must share any message they send with all other partici-

pants as well. The shared message parts are encrypted for the intended recipient, to prevent

information leakage. If a participant claims another refuses to communicate with them, any

other participant can provide the encrypted backup of the required message. This vastly in-

creases the overhead of the protocol, but is relevant for environments with highly expected

malicious behavior.

3.3 Adaptive Di�usion
Adaptive di�usion [46] is a protocol developed to address the privacy impact of the sym-

metry of �ood-and-prune broadcasts. It breaks the symmetry present in regular �ood-and-

prune broadcasts by creating a virtual, or fake, source of the message, identi�ed by a vir-

tual source token. The owner of the virtual source token spreads the message in such a way

that they are the Jordan center of the graph of nodes that received the message so far is the

20 CHAPTER 3. PRIVACY PROTOCOLS

virtual source, not the true source of the message. This prevents the previously outlined

deanonymization attack on �ood-and-prune message broadcasting.

The virtual source can not stay with the true source. To move the virtual source away, the

owner of the virtual source token forwards the token probabilistically. The goal is to equalize

the probability of any node, that already received the message, to be the true source. In other

words, if n nodes received the message, the probability of any node vi having received the

message being the true source v should be approximately P [vi = v] ≈ 1
n .

The forwarding probabilities are dependent on the underlying network assumptions.

Adaptive di�usion uses a d-regular in�nite tree as its basic network model, i.e., each node has

exactly d neighbors and there are in�nite participants within the network. Further, message

transmission happens only at discrete time steps. These assumptions are called contact net-

work, while the message and message transmission is also called infection. The probability of

forwarding depends on the number of previous forwards h, the current number of steps so

far t and the degree of the underlying tree-networkd. Using these parameters, the probability

of forwarding the virtual source token is derived by Fanti et al. as

pd(t, h) =


t−2h+2
t+2 if d = 2,

(d−1)
t
2
−h+1−1

(d−1)
t
2
+1−1)

if d > 2.
(3.1)

The dissemination of the message is performed in steps, where the virtual source node

acts according to a simple scheme: In any odd timestep, forward the message to all neigh-

bors. In an even timestep, either forward or keep the virtual source token, depending on

the derived probability. Any other node will forward the message, if they have received it at

least once before — informally, they behave opposite to a �ood-and-prune broadcast. The

algorithm realizing this protocol is given by Algorithm 8 and Algorithm 9 as it was presented

originally [46]. A node that received the message is considered infected in this presentation.

Although this approach is designed for cycle-free networks, Fanti et al. show initial re-

sults claiming [46] it works well even for general networks. For a network protocol, adaptive

di�usion provides a few challenges. A suitably powerful attacker can subvert the protocol by

connecting to a large number of nodes, as a node informs all neighbors of new messages, re-

ducing the privacy guarantees to distance one. Further, later messages deliver the hop count

h of current forwards, eliminating all nodes of a distance not equal to h. Lastly, the discrete-

time model needs to be transformed into a continuous-time model of real-world computing

systems.

3.4 Further Privacy Protocols

This section shortly introduces various protocols that are used as comparative results or have

a signi�cant mind-share of developers of privacy preserving protocols and should, therefore,

be addressed.

Dissent
The anonymity system Dissent [36, 122] utilizes a dining-cryptographers network and pro-

vides similar properties to the k-anonymous message transmission protocol. Dissent uses

a small number of core servers as anonymity providers and an anonymous announcement

phase per round, where every participant announces the length of message they want to trans-

mit. This allows for variable-sized messages. The announcement phase uses a secure group

3.4. FURTHER PRIVACY PROTOCOLS 21

Algorithm 8 Adaptive Di�usion as described by Fanti et al. [46].

Require: Contact networkG = (V,E), source v′, time T , degree d
Ensure: Set of infected nodes VT
V0 = {v′}, h = 0, v0 = v′

v′ selects one of its neighbors u at random

V1 = V0 ∪ {u}, h = 1, v1 = u
letN(u) represent u’s neighbors

V2 = V1 ∪N(u) \ {v′}, v2 = v1
t = 3
for t ≤ T do
vt−1 selects a random VariableX ∼ U(0, 1)
if X ≤ pd(t− 1, h) then

for v ∈ N(vt−1) do
Infection Message(G, vt−1, v, Vt)

end for
else
vt−1 randomly selects u ∈ N(vt−1) \ {vt−2}
h = h+ 1
vt = u
for v ∈ N(vt) \ {vt−1} do

Infection Message(G, vt, v, Vt)
if t+ 1 > T then

break

end if
Infection Message(G, vt, v, Vt)

end for
end if
t = t+ 2

end for

Algorithm 9 Infection Message algorithm as described by Fanti et al. [46].

Require: Contact networkG = (V,E), source v′, time T , degree d
Ensure: Set of infected nodes VT

if v ∈ Vt then
forw ∈ N(v) \ {u} do

Infection Message(G, v,w, Vt)
end for

else
Vt = Tt−2 ∪ {v}

end if

22 CHAPTER 3. PRIVACY PROTOCOLS

shu�e for all: All nodes encrypt their announcement with layers for all participants accord-

ing to a �xed permutation of the users per round. Each node then in turn shu�es all values

and removes their respective layer of encryption. After every node performed such a shu�e,

all nodes can trust the shu�e, since they participated, and only one honest shu�e is neces-

sary to hide the originator. The last participant publishes the list of message lengths. With

this information, they perform a DC-round to transmit the actual data. The announcement

round causes a startup phase [36] scaling linearly in the number of group members and be-

coming noticeably slow, e.g., 30 seconds, for group sizes of 8 to 12. This latency might not be

acceptable in real-world blockchain applications.

k-Anonymous Overlay Protocol
Wang et al. [115] propose a peer-to-peer transmission protocol, implementing the same func-

tionality as the k-anonymous message transmission protocol by von Ahn et al., i.e., point-to-

point communication.

The network is partitioned in a number of rings, similar to RAC [82]. Within each ring,

nodes can communicate anonymously with any other node. This is achieved by a combi-

nation of layered encryption and shu�ing batches of messages, similar to Dissents shu�e.

During each forwarding, every node must insert a message to prevent deanonymization of

participants.

If a node wants to send a message, they forward the ring identi�er and message anony-

mously to another node in their own ring. The receiving node forwards the message to a

node in the target ring, unless the target is the local ring. The receiving node broadcasts the

message within the target ring, so that the recipient will receive the message.

The protocol claims to require a byzantine-secure setup phase to prevent malicious inser-

tions in the ring con�gurations. Further, the message transmission does not provide arbitrary-

length messages, as their payload slots are �xed in size.

Dandelion
Dandelion [24] proposes a two-phase protocol for statistical spreading. Phase 1 spreads the

message along a line graph, i.e., an approximation of a Hamilton path within the network.

Each node along the line graph has a �xed probability of starting the second phase. Phase

2 uses a �ood-and-prune broadcast to ensure delivery to all nodes. For an attacker to detect

the originator with reasonable certainty, he needs to be the �rst node receiving the message

from the originator. With known topology, many attackers could further improve estimates

without being the �rst recipient. A visualization of the approach is shown in Figure 3.2.

Dandelion++ [47] is an improvement over the initial version. The iteration covers en-

hanced defenses against graph learning and graph construction attacks, as well as intersection,

selective non-participation, and partial deployment attacks.

Gossip with Muting
Bellet et al. [19] investigate a simple gossip protocol with a mute parameter s over a complete

graph, i.e., every node is connected to any other node. A node disseminating a message has

a probability of 1 − s of stopping to disseminate after each interaction with a neighbor.

With s = 0 a node forwards a message exactly once, while s = 1 leads to nodes forwarding

the message via all available connections — essentially a �ood-and-prune broadcast. Bellet

et al. show that gossip with a mute value of s has a di�erential privacy guarantee of δ =

3.4. FURTHER PRIVACY PROTOCOLS 23

Figure 3.2: Example of Dandelion dissemination: The red nodes have received the message

along a line. The last node (S) spreads the message in a regular broadcast manner. [5]

s + (1 − s)β, where β is the fraction of attackers in the network, resulting in the lower

bound of di�erential privacy equal to β.

Tor
The prominent anonymous communication system Tor [40] is usually one of the �rst ap-

proaches when trying to achieve privacy on the network layer. Tor only supports a direct

connection between a pair of nodes and does not provide an abstraction layer for broadcasts.

While it would be possible to tunnel all connections through Tor, it is not well suited to

implement a broadcast mechanism for blockchains. Participants might be forced to connect

without Tor [21] or participants connect without Tor voluntarily, reducing privacy guaran-

tees for all participants. Tor can also be used in addition to the presented systems for a defense

in depth approach. For these reasons, we will not discuss Tor further in this thesis.

Herd, RAC and Cover Tra�c
Networks for di�erent applications, such as Herd [69] for voice over IP or RAC [82], use

other building blocks. These building blocks include mix nodes, trust zones, multiple rings

with onion encryption and cover tra�c. While these could be used for designing a privacy-

preserving broadcast mechanism, they create di�erent problems.

Mix nodes lead to increased load for central infrastructure, due to their need to process all

tra�c. Cover tra�c creates continuous load, which is a problem for rare network utilization,

such as transaction transmissions and limits other uses as the rate is dependent on the use case.

Small DC-nets might scale the number of rounds depending on usage, scaling of cover tra�c

is much more restricted. If a node increases or reduces their bandwidth consumption, this

24 CHAPTER 3. PRIVACY PROTOCOLS

change in behavior can be attributed to their personal change in usage and is not reduced to a

change in the behavior of members of a group. This leaks the information of data usage and

in the context of blockchain systems can be correlated to the arrival times of new transactions,

undermining the privacy-preserving aspect.

Part II
3P3: Strong Flexible Privacy

25

Chapter 4

Overview

This chapter is based on two previous publications at ICDCS and IWCSS [4, 5] (with permis-
sion, © 2018 IEEE).

[4] D. Mödinger and F. J. Hauck. “3P3: Strong Flexible Privacy for Broadcasts”. In: 4th
International Workshop on Cyberspace Security (IWCSS 2020). 2020.

[5] D. Mödinger, H. Kopp, F. Kargl, and F. J. Hauck. “A Flexible Network Approach

to Privacy of Blockchain Transactions”. In: Proc. of the 38th IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS). IEEE, 2018.

In the background chapter we introduced various building blocks and protocols to dissem-

inate messages in a network. One of them, Chaum’s dining-cryptographers networks [32],

provides strong guarantees and has been used by various state-of-the-art protocols. Although

dining-cryptographers networks provide very strong privacy, they are ine�cient for larger

networks.

In this part of the thesis, we introduce a novel protocol: 3P3. 3P3 combines dining-

cryptographers networks with a statistical dissemination protocol to provide a �exible privacy-

preserving dissemination tool to peer-to-peer network developers.

4.1 Structure
3P3, the three phase privacy preserving protocol, consists, as the name suggests, of three

phases. Figure 4.1 illustrates the behavior of the three phases, which are:

1. A dining-cryptographers network.

2. A variant of adaptive di�usion.

3. A �ood-and-prune broadcast.

Each phase ful�lls its own purpose. The dining-cryptographers network provides a strong

base privacy, resistant against powerful attacker models, including a global passive observer.

The adaptive di�usion phase increases the privacy guarantees for cheap and common attacks,

often observed in peer-to-peer networks. These attacks include observer or measurement

nodes with many connections throughout the network. Lastly, the �ood-and-prune broad-

cast ensures delivery to all participants in an e�ective manner, once su�cient privacy thresh-

olds are ensured by the previous protocol layers.

The following sections give a high level view of the functionality of each phase.

27

28 CHAPTER 4. 3P3: OVERVIEW

DC η-AD F&P

Figure 4.1: Overview of the three phases of 3P3. A DC network, our modi�ed η-di�usion

(η-AD) and the �nal �ood-and-prune (F&P) phase. [4]

4.2 Phase I: Dining-Cryptographers Network
The �rst phase uses a dining-cryptographers network to disseminate the broadcast message

in a small group. Using dining-cryptographers networks in such a way allows for better per-

formance but preserving fairly strong privacy guarantees.

In the �rst phase, we perform a preliminary round to establish all desired message lengths,

similar to Dissent [122], using the k-anonymous transmission protocol by von Ahn et al. [12],

see Chapter 3. The actual messages are sent in a separate DC round.

For a �xed group size of k participants, we prepare 2k slots for message lengths. This

number is to ensure a probability of delivery greater than
1
2 even when all participants send a

message. All slots consist of a random identi�er r, a message length ` and a set of k valuesKi,

encrypted to each participant i. The random identi�ers r are required for a node to identify

the slot of their message in the presence of multiple identical lengths. When a participant

i wants to disseminate a message mi, they chose a slot and an identi�er at random. Once

this information is shared through the DC network, all nodes prepare a round with message

length 2
∑
i `i, i.e., the sum of all provided lengths.

Any node that submitted a length ` 6= 0 can �nd their designated position by their

position in the message slot. All other message parts are set to zero. The commitment aggre-

gation to zero for these message parts needs to use the provided random value from round

one. Using these prepared values, allows the author to blame any node that does not send a

zero message in the author’s slot. The messages are summarized in Table 4.1.

If all lengths are zero, the second round can be skipped. Valid lengths should be restricted

to prevent a denial-of-service attack, e.g., 16 bits for the use case of blockchains. A global

passive observer may notice a group only performing the �rst stage, concluding that nothing

has been sent this round. But the broadcast could be traced back to the group anyways by a

global passive observer anyways, so no privacy is lost.

To assign responsibility to start the next round without communication, the node which

has the node identi�er closest to the random identi�er should start the next round. Nodes

sort the node identi�ers and split the available space of values for random identi�ers uni-

formly to prevent an uneven workload.

The original protocol by von Ahn et al. does not permit arbitrarily long messages and

provides signi�cant opportunities for optimizations. These are discussed in Chapter 6.

4.3. PHASE II: ADAPTIVE DIFFUSION 29

Round Transmitted Message

1. [(r1, `1,K1), . . . , (r2k, `2k,K2k)]
2. [m1, . . . ,mi]

Table 4.1: Phase 1 messages transmitting messagesm1 throughmi.

4.3 Phase II: Adaptive Di�usion
The second phase uses adaptive di�usion [46], which consists of two parts, the spreading

mechanism and the virtual source subprotocol. The virtual source should forward messages

so that all nodes of a given distance from them either all received the message or all did not

receive the message.

If a node, which is not the virtual source, receives a message for the �rst time, they re-

member the sender to prevent unwanted extension of the spreading sub-graph over cross-

connections. Then, they select η neighbors. Whenever they receive the same message again

from the same sender, they will forward the message to the selected neighbors. As adap-

tive di�usion was originally constructed for contact networks, we transformed the protocol

slightly as a network protocol. The virtual source token is forwarded with probability pt
based on the expected average degree of the network, and the current time step t.

To initiate the protocol, the initiating node v chooses a random neighbor. Then v sends

the message m and the virtual source token transmission message (v, t = 1, r = H(m)),
tied to the message through the hash of the messageH(m), prompting the execution of the

virtual source algorithm. Every virtual source should monitor the network for the progress

of the protocol. A timeout will trigger re-transmission to a di�erent participant, as the previ-

ously selected might refuse cooperation or be unreachable. The timeout will extend on mes-

sages received through the protocol but only stop when receiving a �ood-and-prune message.

Chapter 6 goes into detail for phase II of 3P3. Further, the original proposal by Fanti

et al. [46] is not suitable for direct use in a peer-to-peer-network. The required changes are

discussed in Chapter 6 as well.

4.4 Phase III: Flood-and-Prune Broadcast
Lastly, the last virtual source initiates a �ood-and-prune broadcast to ensure delivery to all

nodes. When a node receives a message for the �rst time, it forwards the message to all neigh-

bors, excluding the node which sent the message. This phase of the protocol will not be

discussed in detail, as it is realized through a standard and well known algorithm.

30 CHAPTER 4. 3P3: OVERVIEW

Chapter 5

Phase I: Arbitrary Length k-
Anonymity

This chapter is based on an unreviewed publication [9].

[9] D. Mödinger, A. Heß, and F. J. Hauck. “Arbitrary Length k-Anonymous DC Com-

munication”. In: (2021). arXiv: 2103.17091 [cs.NI].

In the previous chapter we presented 3P3, a multi-layer protocol for broadcasts. This pro-

posal builds on top of a dining-cryptographers network. The protocol by von Ahn et al. [12]

constructs a modern implementation of such a dining-cryptographers network. Unfortu-

nately, the protocol was neither designed for arbitrary length messages nor as a broadcast

protocol, so it cannot �ll the required role directly. To address these shortcomings and make

the protocol applicable for a general broadcast use-case, we:

• Extend the k-anonymous message transmission protocol by von Ahn et al. [12] to ar-

bitrary length messages.

• Optimize the extended protocol for performance by reducing the overhead for the

most common scenarios.

• Provide and evaluate an implementation of these protocols.

This chapter is structured in the following way: In Section 5.1, we describe our extension

of the protocol by von Ahn et al. to handle messages of arbitrary length. The privacy and

security properties of this new protocol are discussed in Section 5.2. Section 5.3 introduces

our approach to improve the performance of the protocol.

5.1 Arbitrary Length Messages Protocol

Overview
Our protocol consists of two consecutive rounds, each based on the dining-cryptographers

protocol. The initial round determines whether there are senders that want to disseminate a

message of a certain length. During the �nal round these messages are distributed.

As a �rst step during the initial round, participants with a messagem �rst determine the

length ` of their message in Bytes. They further prepare a random round identi�er r and

31

https://arxiv.org/abs/2103.17091

32 CHAPTER 5. 3P3: ARBITRARY LENGTH K-DC

a set K , composed of k random values of globally �xed length. The latter are required to

ensure fairness during the actual message dissemination process in the �nal round, as we will

point out later. If a participant has no message to disseminate, they set all values to zero.

Finally, they share the set of values (r, `,K) according to the protocol proposed by von Ahn

et al. [12], which we introduced in Chapter 3. To achieve this, each participant with a tuple

of non-zero values chooses a random slot in a pre-prepared vector with 2k slots, where they

place their values. In case of four participants, this vector has the following form.

[(r1, `1,K1), (r2, `2,K2), (r3, `3,K3), (r4, `4,K4),

(r5, `5,K5), (r6, `6,K6), (r7, `7,K7), (r8, `8,K8)]

The protocol then merges the vectors of all participants, using a secure multiparty com-

putation to ensure that the contents of the individual vectors are hidden. This is done by

using the protocol of von Ahn et al.

During the �nal round, the actual messages are disseminated, similar to the approach

implemented by Dissent [122]. Every participant prepares a second dining-cryptographers

round for a message length equal to the sum of the message lengths announced during the

initial round ` =
∑k
i=1 `i. A participant gi with a message length greater than zero de-

termines their o�set in the �nal message based on their random identi�er ri and their an-

nounced length `i. Afterwards they �ll their reserved section with their message m. The

remaining portions of the message have to be set to zero.

The resulting message is then shared using a dining-cryptographers variant. The �nal

inter-group transmission of von Ahn et al.’s protocol has not been adopted by our protocol

since we only assume a single group at this point.

Initial Round
The initial round of our protocol is used to share lengths of messages and prepare veri�able

randomness for the �nal round. The preparation protocol executed is given by Algorithm 10.

The group broadcast following this preparation is identical to Algorithms 4 to 6 of the pro-

tocol by von Ahn et al. [12].

For a �xed group size of k participants, we prepare 2k slots for message lengths. All slots

consist of a random identi�er ri, a message length `i in Bytes and a set of k random values

{{Ki,j}j : j ∈ {1 . . . k}}, encrypted to each participant gj . When a participant gi wants

to disseminate a messagemi they chose a slot and a non-zero identi�er ri at random.

The random identi�ers rself are required for a node to identify the slot of their message

in the �nal round. The length is not enough, as there might be multiple identical lengths.

After a successful execution of the initial round, each participant possesses a list of the form:

[(r1, `1, {K1,1}1 . . . {Kk,1}k) , . . . , (r2k, `2k, {K1,2k}1 . . . {Kk,2k}k)] .

Final Round
After the initial round has been successfully completed, i.e., the above list has been shared, all

participants progress to the �nal round. If the previous list contains at least one `i 6= 0, ev-

eryone prepares a new compound message of length

∑
i `i, the sum of all provided lengths.

Otherwise, the �nal round can be omitted and a new initial round is executed after a con�g-

urable time interval. The preparation is given by Algorithm 11, while the group broadcast is

again identical to Algorithms 4 to 6, but based on the output of Algorithm 11.

5.1. ARBITRARY LENGTH MESSAGES PROTOCOL 33

Algorithm 10 Preparation phase of the �rst DC round.

Input: Messagem
Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

public keys of group participants, slot length ` in byte

r =∼ U{0, 216 − 1}
Slot=∼ U{0, 2k − 1}
K = {Ki = {∼ U{0, 2256 − 1}}i : i ∈ {1 . . . k}}

X[i] =

{
(r, length(m),K) if i = Slot

(0, 0, 0) else

for t ∈ {1 . . . 2k} and i ∈ {1 . . . k} do

sself,i[t] =

{
∼ U{0, 28` − 1} if i < k

X[t]−
∑k−1
j=1 sself,j if i = k

rself,i[t] =∼ U{0, 28` − 1}
Compute Ĉself,i[t] = Crself,i[t](sself,i[t])

end for
Broadcast {Ĉself,i[t] : i ∈ {1 . . . k}, t ∈ {1 . . . 2k}}

Any node that submitted a length ` 6= 0 has reserved ` bytes in the next message, where

the order is determined by the resulting layout of the initial round. Assume there is a non-

zero length `j in slot j. The start of this message inside of the single compound message

transmitted in the �nal round can simply be computed by the length of all previous messages

mentioned in slots i with i < j, formally message j starts at 1 +
∑j−1
i=1 `i. All other parts

not used by the message are set to zero.

Assume an example network with 4 participants. Then there will be 8 slots in the initial

round. Let us further assume that the transmitted lengths are 2, 5 and 4, in the order of

appearance in these slots, e.g. (2, 0, 0, 5, 4, 0, 0, 0). The participant having sent length 4,

will then put its message from the eleventh to the fourteenth byte, as seen in Figure 5.1. All

other bytes are set to zero.

Byte 1 2 3 4 5 6 7 8 9 10 11

Content 0 0 0 0 0 0 0 m
Length ︸ ︷︷ ︸

2
︸ ︷︷ ︸

5
︸ ︷︷ ︸

4

Figure 5.1: Example message allocation in the �nal round. The �rst row gives the index of

the bytes, the second row the occupation using the message lengths as an indicator and the

last row shows the actual usage of the bytes. [9]

For every message slot j not designated for node i, each nodes needs to decrypt the seed

value {Ki,j}i addressed to them. This seed must be used to deterministically create the ran-

domness for all commitments for this slot j. The creator of this slot can later validate that the

commitments are commitments to zero. As all values should be zero, this has no implications

for the privacy of the node creating the commitments.

After a successful transmission, all participants receive the same [m1, . . . ,mi] :

34 CHAPTER 5. 3P3: ARBITRARY LENGTH K-DC

Algorithm 11 Preparation phase of the �nal round. Note that slots are variable in length and

number, so they are only included, i.e., appended to a variable length list, when appropri-

ate. For the same reason, commitments need to be generated for appropriate parts of correct

length of the message, i.e., here 31 Bytes based on the base curve of the commitment scheme.

Input: Messagem, r and ` from Algorithm 10,X from previous round

Environment: Group Gself = {gi : i ∈ {1 . . . k}}, including the executing node gself ,

executing node gself
for t ∈ {1 . . . 2k} do
(r[t], `[t],K[t]) = X[t]
if `[t] = 0 then

continue
end if

Ŷ =


m if r[t] = r ∧ `[t] = `

0 . . . 0︸ ︷︷ ︸
`[t] many

else

for i ∈ {1 . . . k} and part ∈ {1 . . . d `[t]31 e} do

ŝ =

{
∼ U{0, 28×31 − 1} if i < k

Ŷpart −
∑k−1
j=1 sself,j if i = k

{Note: Ŷi references the i-th block of 31 Bytes of Ŷ }

r̂ = PRNGK[t][self](∼ U{0, 28×31 − 1})
sself,i. append(ŝ)
rself,i. append(r̂)

Ĉself,i. append (Cr̂(ŝ))
end for

end for
Broadcast {Ĉself,i : i ∈ {1 . . . k}}

Yresult
Alg. 6
=

∑
j

Sj
Alg. 5
=

∑
j

∑
h

sh,j

=
∑
h

∑
j

sh,j
(∗)
=
∑
h

sh,k + ∑
j∈{1...k−1}

sk,j


Alg. 11
=

∑
h

(Ŷ [h]−
∑

j∈{1...k−1}

sk,j) +
∑

j∈{1...k−1}

sk,j


=
∑
h

Ŷ [h] =
∑
h

[0, . . . , 0,mh, 0, . . . , 0] = [m1, . . . ,mi].

Where (∗) just removed one entry from the sum.

Once the sender of a message notices a collision, i.e., their own message is damaged, they

verify that all commitments of participants are correct. If a commitment of participant i
for slot j does not correctly validate to zero, the sender creates a blame message of the form

(i,Ki, j, round-o�set).Here, the round o�set identi�es the instance of the protocol where

the violation occurred, e.g., 1 for the previous instance. This message is inserted in the next

round, allowing other participants to validate the blame without revealing the sender of the

5.2. PRIVACY AND SECURITY 35

message.

5.2 Privacy and Security
In this section, we discuss the privacy and security of our protocol. Here, privacy concerns

itself with how to identify the originator of a given message. Security, on the other hand,

covers the correctness and robustness of the protocol, i.e., if the protocol can be prevented

from sharing the message.

Initial Round
Since the initial round is based on the k-anonymous message-transmission protocol proposed

by von Ahn et al. [12], it exhibits the same correctness, robustness, fairness, and anonymity

and is secure in the discrete logarithm model. Here, robustness means that either all hon-

est participants that have a message to disseminate will eventually successfully transmit their

message, or an attacker is exposed. To prevent a denial-of-service attack in the �nal round, the

message lengths should be restricted, e.g., 216 Bytes, when used in blockchain applications.

Otherwise, an attacker could announce arbitrary message lengths, which would drastically

slow-down the execution of the �nal round.

Final Round: Security
During the �nal round, the random values r for the commitments are generated using a

pseudo random number generator seeded with theKi distributed during the initial round.

Therefore, the legitimate message sender can validate the commitments as zero commitments

in case a collision occurs, since they can deterministically recompute all values r based on the

Ki they sent, allowing them to check the commitment to zero.

If a commitment does not reveal to be zero, the legitimate message sender will inject a

blame message in a later protocol instance. Other participants can verify the seed and val-

idate that the commitment is not zero. If the accusation is true, they exclude the attacker.

An honest participant can not be blamed without breaking the security assumption of the

underlying commitment scheme. Therefore, either all messages are successfully transmitted

or an attacker is identi�ed and excluded.

The protocol is capable of dealing with non-cooperation, similar to the approach pro-

posed by von Ahn et al. [12], by sharing encrypted instances of all {(sself,j , rself,j)}j pairs

with every participant, allowing the reconstruction of the contents even during attacks using

selective non-cooperation. This creates considerable additional load, so forming of a com-

pletely new group might be more economical.

Given the previous conclusions, the �nal round provides robustness properties similar

to those of the initial round: either the transmission succeeds, or an attacker is excluded.

Therefore, the protocol will eventually succeed, for a �nite number of attackers and su�-

ciently many honest participants.

Final Round: Privacy
By construction, as it is using the same dissemination mechanism as the initial round, the

protocol ful�lls the privacy requirements of dining-cryptographers protocols. Nonetheless,

we would like to highlight the privacy properties of important situations and how they come

to be.

36 CHAPTER 5. 3P3: ARBITRARY LENGTH K-DC

Revelations over recent years have shown that service providers and intelligence agencies

across the world collect and analyze information, coming reasonably close to a global passive

attacker. If such an observer could collect all slices si,j of a participant, they could recompute

the original message sent by the participant. This is prevented by authenticated encrypted

channels between participants.

In order to prevent tra�c correlation, DC networks require all participants to send the

same amount of data during each round, to ensure that the senders cannot be identi�ed based

on the amount of generated network tra�c. While a global passive attacker can detect the

communicating DC groups and the broadcast message, they can not identify the originator

within the group [12, 32]. Our protocol provides k-anonymity against this type of attacker,

with k = |group|.
Therefore, to improve the detection of DC group participants, an attacker has to be part

of the group. For β attackers within the group, DC-network based communication trivially

provides (k−β)-anonymity: removing the β known keys s of attackers from the key-graph

results in a remaining graph of size k − β, cf. Chaum [32].

The anonymity guarantees, i.e., the expected number of attackersβ, depend on the group

formation mechanism [12]. Current strategies of a random selection of participants with an

assumed attacker probability p require group sizes of
2k
1−p to provide k-anonymity with high

probability [12]. These bounds depend on the attacker probability distribution, which could

be improved through external trust information during the group formation.

5.3 Performance Optimization

In this section, we discuss a multitude of optimizations built into the protocol, to improve

its performance.

Small Optimizations
The protocol allows for various smaller optimizations to improve performance.

Precomputation: To reduce startup latency, commitments can be prepared before a

protocol instance is started or during the downtime of a previous instance. The random

blinding factors for the commitments of the initial round can be pre-generated. Since each

participant has to generate at least 2k− 1 zero commitments for the empty slots, these com-

mitments can be precomputed as well.

Deferred validation: While the validation of commitments is important to identify

misbehaving nodes, it is su�cient to validate the commitments only when malicious behav-

ior is observed. To achieve this, messages and commitments should be stored on disk for

later validation. Additionally, hash-based message codes augment the sent elements, i.e., the

(r, `,K) tuples in the initial round and messages in the �nal round, to detect misbehavior

more reliably. A sender can always identify previously unnoticed misbehavior and trigger

validation.

Direct transmission: If the messagem a participant wants to send is short, i.e., shorter

than the elements of the length message |m| < |(r, `,K)|, the message can replace the length

identi�er and be sent directly. To allow this behavior, as well as blame messages, some special

values for r can be reserved to indicate a direct transmission.

Size of the Random Identi�er: To keep the size of random identi�ers small, we do

a quick evaluation based on the birthday paradox formula. It provides a rough boundary,

given a collision probability p and group size k:

5.4. CONCLUSION 37

sizeof(r) ≥ log2

(
1

1− (1− p)
2

k(k−1)

)
.

For a collision probability of 1%, we can tolerate 36 participants using 16 bits per ran-

dom identi�er, as collisions should already be rare due to requiring the same length. Most

applications should function well with these values.

Overhead Reduction in Normal Operation
The proposed protocol has massive overhead to secure its operation in a malicious environ-

ment, e.g., commitments, seeds for commitments and more. This overhead can be severely

reduced in an environment where maliciousness is the exception. For example, in normal

operation, there is likely no attack on the robustness of the system. If a possible attack is de-

tected, e.g., multiple collisions or garbage results in a round, the protocol can still switch to

a secure mode. In its secure mode, the protocol is used as described in Section 5.1.

The unsecured variant removes several aspects. No commitments are created or added to

the protocol. Therefore, no commitment seeds need to be generated and transmitted in the

initial round. This results in a message of the form (r1, `1), . . . , (r2k, `2k)which can be en-

coded as 2k integers of 4 or 8 bytes. It’s important to note that this removal of commitments

does not impact the privacy of the dining-cryptographers construction.

This construction results in a more complex protocol state machine, which is shown in

Figure 5.2. The group init phase represents the (re)formation of the group, possibly expelling

identi�ed attackers. Once a group keyGPC is established, the protocol starts with unsecured

rounds. Once a likely attack is detected, i.e., more slots are occupied than there are partici-

pants or there are many collisions, the protocol will switch to a secure variation.

If the attacker correctly participates in the secured round, this will impose the aforemen-

tioned overhead without any attacker being revealed. Depending on the scenario, instead of

permanently operating in the secured mode, it may be advisable to create a group with fresh

participants.

5.4 Conclusion
In this chapter, we provided an extension of von Ahn et al.’s protocol to arbitrary length mes-

sages. This allows its application for a sender-k-anonymous broadcast protocol for arbitrary

messages. Further, we optimized the protocol to run faster in its secure mode as well as in a less

secure mode for common use-cases, without compromising the privacy of the participants.

With these changes, the resulting protocol is suitable to use in 3P3 as an implementation of

the �rst phase, which provides a strong base privacy.

38 CHAPTER 5. 3P3: ARBITRARY LENGTH K-DC

Figure 5.2: State machine of the optimized protocol. [9]

Chapter 6

Phase II: η-Adaptive Diffusion

This chapter is based on a paper published at Plos One [6].

[6] D. Mödinger, J.-H. Lorenz, and F. J. Hauck. “n-Adaptive Di�usion for k-Growing

Networks”. In: Submitted to Plos One. 2021.

In Chapter 4 we presented the design of 3P3. 3P3 requires a statistical privacy mechanism for

its Phase II, to provide augmented privacy guarantees. The notion of statistical privacy was

introduced in Chapter 2. Adaptive di�usion [46] is one of the representatives of this class of

protocols. Unfortunately, the attacker model and network model of adaptive di�usion are

not suitable for real-world computer networks, so it can not be used directly in 3P3. To make

adaptive di�usion into a feasible network protocol, in this chapter, we:

• derive optimal forwarding probabilities for adaptive di�usion, based on the abstract

distribution of shortest paths in the underlying network,

• model the distribution of shortest paths in k-growing graphs,

• provide an estimator for the distribution of shortest paths based on the number of

participants n and edges per node k, and

• change the protocol so that it can withstand a more realistic attacker model.

This chapter is structured in the following way: Section 6.1 gives a short description of

graph models for networks used in this chapter. Section 6.2 gives an overview of the resulting

transformation of adaptive di�usion. In Sections 6.3 and 6.4 we discuss the details of the re-

quired changes to the protocol. Section 6.3 considers the changes in privacy and network as-

sumptions of adaptive di�usion for the transformation to a network protocol. In Section 6.4,

we investigate distributions to determine a concrete implementation of the probabilities in-

volved with the protocol. To achieve this, we derive an estimation of the shortest paths for

networks following a k-growing model. Section 6.5 discusses the privacy properties of the

resulting protocol.

6.1 Graph Models for Networks
Within this chapter we perform some theoretical and practical analysis. For this analysis we

require a model for peer-to-peer networks. As this chapter builds on adaptive di�usion, we

reiterate the model used by Fanti et al. and describe the model we use to replace this original

model.

39

40 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

In�nite Regular Trees
Adaptive di�usion [46] uses in�nited-regular trees as their base network model. Such a graph

has no cycles, i.e., between any two nodes exists exactly one path. Further, each node is con-

nected to exactly d neighbors via d edges and, therefore, has in- and out-degree d. As it is

in�nite, there is no number n limiting the number of nodes and no maximum distance, of-

ten called a graph diameter, within the graph. For a more in-depth introduction to graphs,

we recommend Jackson’s Social and Economic Networks [58].

Scenario
In this chapter, we discuss the privacy of broadcasts within an unstructured peer-to-peer

network. For some applications, e.g., broadcasts of �nancial transactions in a blockchain

network, the sender of a broadcast message has an interest in not being revealed. This is,

despite the main goal being everyone receiving their message. The goal is, therefore, to hide

the originator of such a message.

The default solution to broadcasting a message in an unstructured network is a �ood-

and-prune broadcast. Here, the sender sends the message to all its neighbors. A node that

has not received the message yet will send it to all of its neighbors. The node excludes the link

over which it received the message. Broadcasting, in this way, produces a highly symmetrical

dissemination pattern, leading to possible identi�cation attacks.

Assume there are nodes, which are collaborating to identify the originator of such a mes-

sage, as shown in Figure 6.1. Those nodes might be distributed throughout the network and

can learn the topology of the network over time. These nodes can reliably estimate the iden-

tity of the sender of the message by determining the graph center, or Jordan center, of the

nodes that already received the message. The Jordan center of the graph is the node, which

has the smallest distance to all a�ected nodes. Given a graph G with a set of vertices V and

edgesE, as well as a distance function d, the Jordan center can be de�ned as:

center(GV,E) := argminu∈V max(d(u, v) : v ∈ V).

In our scenario, the a�ected nodes are those that already received the message.

While varying network latencies might distort the result, the set of likely originators is

small. Lastly, an attacker might also create connections to all nodes, always receiving the

message as a neighbor of the true source.

Networks and Graphs
Peer-to-peer networks can be constructed in various ways [44]. One of the broadest distinc-

tions of peer-to-peer networks is between structured and unstructured networks. Structured

peer-to-peer networks tightly control their overlay, while unstructured peer-to-peer networks

have peers join the network on loose rules. Unstructured networks often use broadcasts, of-

ten called �ooding in peer-to-peer contexts, across the overlay [44].

One set of rules to create such a network has a new peer connect to nodes selected ran-

domly from a list of known participants. This list can be initially retrieved by publicly known

participants or via a gossip protocol while part of the network. The number of created con-

nections maintained by new nodes is often �xed in the client source code. Examples of this

construction are the network of Bitcoin [45] and classic Gnutella [93].

To model this behavior via graphs, we use an establishing algorithm. Let us try to estab-

lish a network of n nodes, or vertices, by successively adding nodes. Each node establishes

k edges, or connections, to previously existing nodes. No node establishes loops, i.e., edges

6.2. K-GROWING η-ADAPTIVE DIFFUSION 41

Figure 6.1: Motivating example: The originator of a message (O, blue) disseminates a

message along the connections (arrows). The area highlights all nodes that received the

message so far. Attackers (A, red) distributed throughout the network will receive the

message in the next step and can reconstruct the originating node. [6]

with itself or multiple edges. The result is, therefore, a simple graph. In this thesis, we call

this a k-growing graph with n nodes.

The previous design ensures a connected component of all network participants. Fur-

ther, the design is resistant to churn, the act of peers joining and leaving the network, which

is not re�ected in the model. Churn within a model is a complicated parameters [104], as

churn rates may di�er for nodes dependent on their network participation, i.e., long-running

nodes are often less likely to leave the network.

The original adaptive di�usion uses an in�nite d-regular tree. Such a graph has no cycles

and is connected, i.e., between any two nodes exists exactly one path. Further, each node has

a degree of d, i.e., each node is connected to exactly d neighbors via d edges. As it is in�-

nite, there is no number n limiting the number of nodes and no maximum distance within

the graph, often called a graph diameter. For a more in-depth introduction to graphs, c.f.

Jackson’s Social and Economic Networks [58].

Attacker Model

Throughout this chapter, we consider attacks on the privacy of network participants. This

attack is performed by a colluding fraction of participants of the network, which act in a

semi-honest or honest-but-curious manner. Attackers follow the protocol but will attempt

to infer the identity of the originator of a given message, i.e., which node created it. This

model is used in similar settings [19], as it focuses on information leaks within the protocol.

6.2 k-Growing η-Adaptive Di�usion

The general idea is still that of adaptive di�usion: The virtual source should forward mes-

sages so that it is the Jordan center of the sub-graph created from all nodes that received the

message. In detail, we apply some modi�cations to the protocol.

42 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

First, we limit the spread, i.e., the number of neighbors involved in the dissemination, to

η many neighbors. This change re�ects in the message handling sub-protocol Algorithm 12,

as nodes need to select a limited set of neighbors for a given protocol run, compare Line 2.

We store the selected neighborsNm across multiple runs of the protocol, but for di�erent

messagesm, the neighbors are selected again.

Further, arbitrary networks may have multiple paths between nodes, so a node may be se-

lected as a neighbor for this protocol run, by multiple nodes. To prevent asymmetric spread,

a node must only react on messages received via a single path. To enforce this, we store the

�rst node we interact with given a messagem as the predecessorm, see Line 3.

Algorithm 12 η-adaptive di�usion message handling algorithm. [6]

Input: Messagem
Environment: Message sender v, Self vself

1: if predecessorm = ∅ then
2: Nm =randomly select η neighbors out ofN(vself) \ {v}
3: predecessorm = v
4: else
5: if predecessorm = v then
6: sendm to allNm
7: end if
8: end if

The virtual source sub-protocol Algorithm 13 requires further changes. The true source

uses the message (v, t = 1, r = H(m)) to initiate the protocol, which we call the virtual

source token. H(m) is a suitable hash function to identify the current message e�ciently.

The hop counter h has been dropped, as it leaks the distance to the true source to possible

attackers.

On receiving the virtual source token, e.g., via Line 12, the recipient balances the spread

of the message, so they are the center of the spread graph. This is achieved by triggering the

message handling algorithm on all neighbors, not including the node that sent the initiation

message. This process is covered by lines 1 through 6.

The later part of the algorithm either forwards the message to all selected neighbors, see

Line 16, which were selected in the message handling algorithm, Algorithm 12. Alternatively,

the virtual source token is forwarded to a new virtual source with probability pt, c.f., Line 10.

The probability pt can be computed based on the distance distribution within the network

f, i.e., f(i) gives the expected number of nodes in distance i of any node. The exact compu-

tation is quite involved; compare Section 6.3 for details.

After a suitable threshold is reached for the privacy of the originator, i.e., the set of poten-

tial originators is large enough, the protocol switched to a �ood-and-prune broadcast. This

will ensure delivery to all participants and increase e�ciency. At this point, privacy would

barely improve by continuing adaptive di�usion. Expected privacy has reached its maximum

once the full network is part of the set of potential originators.

To preserve the privacy of participants, nodes must monitor network latencies, as they

have to arti�cially slow down the protocol when keeping a virtual source token. Further,

every virtual source node must monitor the network for the progress of the protocol. A

time-out will trigger retransmission to a di�erent participant, as the previously selected is

considered as refusing cooperation or unreachable. The time-out will extend when a message

related to the current protocol instance is received, i.e., it concerns the messagem.The time-

out will only stop when receiving a �ood-and-prune message relating to the same message

6.3. PRIVACY FOR GENERAL NETWORKS 43

Algorithm 13 η-Adaptive Di�usion virtual source handling algorithm.

Input: Previous virtual source vp, message identi�erH(m), current timestep t
Environment: NeighborsNm with |Nm| = η + 1, depth d

1: for v ∈ Nm \ {vp} do
2: Sendm to v
3: if t+ 1 ≤ d and t > 1 then
4: Sendm to v
5: end if
6: end for
7: while t ≤ d do
8: t = t+ 1
9: x =∼ U(0, 1)

10: if x ≤ pt then
11: vnext =∼ U{Nm \ {vp}}
12: Send (vself , t,H(m)) to vnext, to call Algorithm 13

13: break
14: else
15: Wait for≈1 expected network latency

16: for v ∈ Nm do
17: Sendm to v
18: end for
19: end if
20: end while

m.

6.3 Privacy for General Networks

Challenges
Some generalizations arise when considering general computer networks instead of in�nite

tree graphs. General networks may have cycles, i.e., multiple paths between participants, and

a non-regular distance distribution. To extend the model of adaptive di�usion to these cir-

cumstances, we replace the calculations based on properties of a tree with a more general

distribution function f, i.e., there are f(i) nodes with distance i.
To prevent an attacker from learning additional information about the originator, we

have to modify some aspects of the protocol. First, we have to remove the h used in the

protocol, as an attacker can infer the exact distance to the originator. As other participants

may not know the distance distribution of the originator and to keep the protocol general, we

will use a homogeneous distribution, i.e., all nodes use the same distribution f to compute

their probabilities.

First, we will analyze the ideal situation for virtual source passing. Based on the results in

an ideal setting, we show the minimal required modi�cations for non-ideal settings.

Ideal Virtual Source Passing Probabilities
As there is no �xed topology to analyze, we need to model the process of passing the virtual

source token in a more abstract way. To model the process, we use a time inhomogeneous

44 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

Markov chain, i.e., the probabilities involved may change based on the time t. For a network

of diameter ∅, the chain has ∅ + 1 states 0, 1, . . . ,∅. Each state represents the current

distance of the virtual source from the true source.

0 1 2 . . . ∅

1− pt(0)
pt(0)

1− pt(1)
pt(1)

1− pt(2)
pt(2) pt(∅− 1)

1

Figure 6.2: Time inhomogeneous Markov chain of passing the virtual source token. [6]

A node of distance h to the true source should pass the virtual source token to a more

distant node with probabilitypt(h).Alternatively, the node keeps the distance the same with

probability 1− pt(h).The Markov chain with these properties is visualized in Figure 6.2.

As noted before, a participant may not know its actual distance to the true source h, so

the probabilities pt(h) may not depend on the distance to the true source.

At time t, let the i-th row of the vectorPt ∈ [0, 1]t describe the probability of the virtual

source token being with a node of distance i from the true source. We haveP1 = (1), as the

true source has distance 0 to itself and has the token initially. Further, letMt ∈ [0, 1]t+1×t

be the stochastic column matrix describing the transition from the t-th to the (t+1)-st step,

i.e.,Pt+1 =MtPt =MtMt−1 . . .M1P1.Based on our Markov model, the matrixMt has

the form:

Mt =



1− pt(0) 0 0 · · · 0

pt(0) 1− pt(1) 0
...

0 pt(1)
. . .

. . . 0
...

. . .
. . . 0

...
. . . 1− pt(t− 1)

0 · · · · · · 0 pt(t− 1)


.

To solve for probabilities pt(h), we de�ne our goal state: the probabilities for all any

reachable node should be

1

#reachable nodes in step t
=

1∑t−1
s=0 f(t)

.

Using this, we can describe the probability of a node of distance i having the token at

step t as

ft(i) =
f(i)∑t−1
s=0 f(s)

.

Using this, we can write the goal of equal probability as

Pt =


ft(0)
ft(1)
...

ft(t− 1)

 =
1∑t−1

s=0 f(s)


f(0)
f(1)
...

f(t− 1)

 !
=MtMt−1 . . .M1P1.

6.3. PRIVACY FOR GENERAL NETWORKS 45

Unfortunately, the number of restrictions does not necessarily allow for a single solution,

perfectly ful�lling our goal. We can compute a possible solution pt based on the last row of

our transition equation.

Mt−1Pt−1 =


1− pt−1(0)

pt−1(0)
. . .

. . . 1− pt−1(t− 2)
pt−1(t− 2)




ft−1(0)
ft−1(1)

...
ft−1(t− 2)



=


ft(0)
ft(1)
...

ft(t− 1)

 = Pt

Extracting the entries involved in computing the �rst entry of the target vector, we can

compute pt(0). This result provides a base case for recursively computing solutions for all

rows.

(1− pt−1(0))ft−1(0) = ft(0)

⇔ 1− pt−1(0) =
ft(0)

ft−1(0)

⇔ pt−1(0) = 1− ft(0)

ft−1(0)

⇔ pt(0) = 1− ft+1(0)

ft(0)

Using this base case, we can extract all entities involved in the (i + 1)-st line and �nd a

solution for pt(i), based on results established in previous lines.

ft(i) = pt−1(i− 1)ft−1(i− 1) + (1− pt−1(i))ft−1(i)
⇔ (1− pt−1(i))ft−1(i) = ft(i)− pt−1(i− 1)ft−1(i− 1)

⇔ pt−1(i) = 1− ft(i)− pt−1(i− 1)ft−1(i− 1)

ft−1(i)

⇔ pt(i) = 1− ft+1(i)− pt(i− 1)ft(i− 1)

ft(i)

By induction we arrive at a cleaner iterative result, removing all mentions of pt in the

calculation.

ft(i)pt(i)︸ ︷︷ ︸
ai

= ft(i)− ft+1(i) + pt(i− 1)ft(i− 1)︸ ︷︷ ︸
ai−1

⇔ ft(i)pt(i) =

i∑
j=0

(ft(j)− ft+1(j))

⇔ pt(i) =

∑i
j=0(ft(j)− ft+1(j))

ft(i)

46 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

As the actual distance of a node from the origin is unknown, we have to determine a

single probability. As the distribution over h is known — it is our desired state ft — we

can combine these with the precomputed probabilities per distance. This achieves a single

forwarding probability:

pt =

t−1∑
h=0

ft(h)pt(h).

A node that did not forward the token could recompute the forwarding probability using

its expected distance from the previous round to achieve better hiding.

Non-Ideal Virtual Source Passing
The ideal solution only holds if and only if the next statePt is reachable fromPt−1 by a single

increase or stay. The condition can be formalized with the following requirements, derived

from the solution:

0 ≤ ft(0)

ft−1(0)
≤ 1 (6.1)

0 ≤
∑i
j=0(ft(j)− ft+1(j))

ft(i)
≤ 1 (6.2)

Equation (6.1) is always true by construction, as f(i) > 0 and

ft(0)

ft−1(0)
=

f(0)∑t−1
s=0 f(s)

f(0)∑t−2
s=0 f(s)

=

∑t−2
s=0 f(s)∑t−1
s=0 f(s)

≤ 1.

Equation (6.2) intuitively describes that the probability of a node in distance j possessing

the token cannot exceed the probability of a node of the same distance possessing the token

in the previous time step in addition to the total change in lower distances.

If this condition is violated, we need to compensate in the distribution or probabilities.

Either way, the resulting distribution will be non-optimal regarding its hiding capabilities.

To minimize the deviation, we determine the �nal desired state of the protocol, after t steps,

with t ≤ ∅. We then compute a new P ′i ,∀i ≤ t as

P ′i =

 f′i(0)
...

f′i(i− 1)


Here, f′ is derived from f as:

f′t(i) =

{
ft(i) if t is max desired state

ft(i) + max(χt,i, δt,i) otherwise

χt,i =

t∑
j=i+1

ft(j)− f′t(j)

δt,i = f′t+1(t)− ft(i) +

t−1∑
ji+1

(
f′t+1(j)− f′t(j)

)

6.3. PRIVACY FOR GENERAL NETWORKS 47

The value δt,i represents the di�erence required to ful�l Equation (6.2). On the other

hand, χt,i represents all changes made to later entries, i.e., propagating the changes made

through δ. Note that Equation (6.2) is equivalent to the following.

0 ≤
∑i
j=0(ft(j)− ft+1(j))

ft(i)
≤ 1

0 ≤
i∑

j=0

(ft(j)− ft+1(j)) ≤ ft(i)

Applying this equation to our goal state f′ we �nd the generation of f′ through the fol-

lowing changes:

f′t(i) ≥
i∑

j=0

(f′t(j)− f′t+1(j))

=

i∑
j=0

f′t(j)−
i∑

j=0

f′t+1(j)

∑k−1
j=0 fk(j)=1

= 1−
t−1∑
j=i+1

f′t(j)− (1−
t∑

j=i+1

f′t+1(j))

=

t−1∑
j=i+1

f′t(j) +

t∑
j=i+1

f′t+1(j)

=

t−1∑
j=i+1

f′t(j) +

t−1∑
j=i+1

f′t+1(j) + f′t+1(t)

=

t−1∑
j=i+1

(
f′t(j) + f′t+1(j)

)
+ f′t+1(t).

This leaves us with only known values, allowing us to compute the minimum di�erence

required, i.e., δt,i. We showed that if it is possible to achieve an optimal result, probabilities

derived from f′ are optimal. If such a result is not possible, probabilities derived from f′ will

yield a result with minimum deviation for intermediate steps.

Continuous Time
All previous discussions are in discrete time, i.e., the time t is in steps, especially natural

numbers. A network protocol must operate in some form of continuous-time or at discrete

timesteps small enough to be considered continuous for practical purposes. Fortunately,

network protocols lend themselves for a simple conversion technique: network latency.

If there was no delay between messages, a token transfer to another node could be ob-

served by all participants of the protocol so far. To prevent this observation, a node must

insert an arti�cial latency when not forwarding the message. The latency should be drawn

from a distribution indistinguishable from real network latencies. Therefore, a node must

observe the latencies of its connections.

48 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

Spread reduction

One remaining privacy problem of adaptive di�usion is the selection of all neighbors for

dissemination. If an attacker is a neighbor of the �rst recipient of the virtual source token,

they will notice the broadcast as soon as possible without being the �rst virtual source recip-

ient. An attacker can force this situation by creating connections to all participants in the

network. Even with many unobtrusive attackers distributed throughout the network, the

chance of selection is high.

To reduce privacy leaks, we introduce the parameter η. Participants only select η neigh-

bors to participate in the protocol instead of all neighbors. This reduces the chance of select-

ing at least one attacker.

Limiting the set of participating neighbors prevents full coverage of the network through

adaptive di�usion alone. Therefore, an additional �ood-and-prune phase is necessary to en-

sure delivery to all network participants. Lastly, lower values of η increase the required time

to reach larger parts of the network, e.g., 21 nodes are reached after three spread rounds with

η = 2,while η = 5 reaches 30 nodes in two spread rounds.

Limitations

Unfortunately, a node can not reliably decide which edge increase or decrease the distance

to the true source, as the source is unknown or an edge with the desired probability is not

available. For every node, keeping the token will keep the distance the same. As a heuristic

for early nodes, returning the token along the path it was received likely reduces the distance

by one, while forwarding it to another node likely increases the distance. Knowledge about

the neighbors of neighbors can increase the accuracy of this heuristic.

For networks observed in real-world peer-to-peer-networks, the small-world property

likely holds [58, 116]: the shortest distance between any two nodes is likely below or equal

to 6. After six steps, the candidate pool for the true source is most of the network. There-

fore, performing the analysis is su�cient for the early steps of the protocol.

Due to the lack of information stemming from the privacy requirements, the distribu-

tion of nodes holding the virtual source is distorted at every step, making the result less accu-

rate. Alternative approximations based on the distribution may perform better empirically.

One improvement may be a better approximation by nodes holding the virtual source token.

They can infer their distance to the true source to be at most t the moment they receive the

token. Therefore, they have no reason to use the probabilities as if they were at distance t+1
should they keep the token.

Lastly, the result of the previous section is based on a distribution of the shortest paths

within the networks. This distribution is not generally known for most graph types and

could not be empirically determined by a participant without knowledge of the topology.

6.4 Distribution Model

We analyzed expected k-growing network topologies, which are similar to real-world peer-

to-peer network growth, for their distance distributions. This relieves the �nal limitation,

knowledge about a concrete distribution. The result allows a node to compute pt based on

the number of expected edges per node and the number of nodes in the network.

6.4. DISTRIBUTION MODEL 49

Distributions for Alternative Models

Fronczak et al. [49] derive an exact solution for random Erdös-Rényi graphs, i.e., random

graphs where all edges are equally likely. They especially consider Erdös-Rényi graphs with

two hidden variables hi and hj . Let γ ≈ 0.5772 be Euler’s constant, the resulting average

degree distribution is given by

l =
−2(lnh) + lnN + ln(h2)− γ

lnN + ln(h2)− lnβ
+

1

2
.

Loguinov et al. [72] investigate structured peer-to-peer networks. They provide a suc-

cinct overview over shortest path results for Chord and CAN networks. Chord shortest

paths are binomial distributed, which tends to a normal distribution for larger values, while

CAN becomes normal as well, for increasing CAN dimensions. Lastly, they propose an ar-

chitecture using de Bruijn graphs, which have no closed-form for their distribution of short-

est paths but give an exponential approximation.

Roos et al. [96] derive a model for Kademlia like systems. Kademlia is a structured peer-

to-peer network with routing based on b-bit long identi�er spaces. They consider a network

of order n,where routing considersα close nodes to reach β nodes close to the target, based

on a k-bucket routing system. They model the hop count distribution of a given system via

a Markov chain. They derive a space complexity ofO(b2α

(α!)2) and computation complexity

of O(nbα(β+2)) for their resulting model. As α, β and k are usually constant for a given

deployment, it is manageable for network participants but not optimal. For details about

the fairly complex model, refer to the original publication [96].

The results provided by these works are applicable if the network conforms to the pro-

posed structure. Unfortunately, they do not map well to the proposed model, lack an ap-

proach for parameter inference and are complex to use.

Methodology

We determine suitable distributions and their parameters by creating and analyzing random

graphs. To create the graphs, we use igraph
1
, while the analysis is done using scipy [62].

We chose igraph’s graph establishment function, which takes a number of nodes n and

a number of edges per node k. The method creates a random graph by sequentially adding

nodes. Each node creates k edges to already existing nodes. This scheme leads to a connected

graph, where older nodes have a higher number of connections, while new nodes have at least

k connections.

We chose this scheme as it is similar to the schemes used in peer-to-peer networks. A new

node connects to publicly known nodes and asks for a set of participants. The new node then

chooses some number of nodes to connect to. This model is a simpli�cation, as it ignores

churn, i.e., nodes leaving and joining the network again, but it is a close �t for real-world

applications.

To reproduce the steps and results of this chapter, we provide a repository of our data

and scripts under the MIT open source license
2
, including an interactive notebook for ex-

perimentation.

1https://igraph.org/
2https://github.com/vs-uulm/eta-adaptive

https://igraph.org/
https://github.com/vs-uulm/eta-adaptive

50 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

Models for Distance Distribution

To model the observed behavior, we chose various discrete and continuous distributions. As

discrete candidates, we looked at Poisson, Planck, Binomial and Geometric distributions.

For continuous distributions, we considered the normal, log-normal, truncated normal and

Weibull distribution. We evaluated the �t of continuous distributions by the overall shape,

as the data is discrete.

The Weibull distribution was chosen as a candidate for the extreme value distributions, as

shortest paths are calculated as minimums over paths. The normal distribution was chosen

due to the central limit theorem, i.e., the normal distribution as the limit of independent

samplings. The log-normal and truncated normal distributions were selected as a candidate

as its support can be limited to positive values — a sensible limitation for path lengths.

We estimated parameter �ts for all distributions from many generated graphs. The trun-

cated normal was mostly indistinguishable from the produced normal distribution. Simi-

larly, the log-normal distribution was transformed to mimic the normal �t closely. Therefore,

we removed the truncated and log-normal distribution as candidates to not over-complicate

the model. Representative examples for continuous �ts are shown in Figure 6.3.

0 2 4 6 8
0

0.2

0.4

0.6

Distance

F
r
a
c

t
i
o

n
o

f
N

o
d

e
s

2000 nodes and 6 edges

Data

Normal

Weibull

Figure 6.3: Fitted continuous distributions from an example dataset, which was created

using 2000 nodes and 6 edges per node. A lognormal and truncated normal �t were plotted

identically to the normal distribution and were, therefore, omitted. [6]

Similarly, the results for the discrete distributions was not a good �t. Only the Poisson

distribution produced a convincing �t for any graph but limited to graphs with k = 1. We

did not test other discrete distributions as often no e�cient maximum likelihood estimators

exist or are implemented. Representative examples for discrete �ts are shown in Figure 6.4.

Finally, the results for the normal distribution produced good point-wise �ts for graphs

with k > 1. The normal distribution �ts were especially accurate for the core section of

the distribution, which is also consistent with �ndings of normally distributed path lengths

in other peer-to-peer networks [72]. The most signi�cant deviation from the data could be

observed for the low end of the distribution: for distance 0 or 1. Fortunately, these values can

be �tted manually based on the parametersn, k, as the mass at a distance of zero should be
1
n

and the expected mass at the distance of one should be
k(2n−k−1)

n2 , i.e., the average degree.

6.4. DISTRIBUTION MODEL 51

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Distance

F
r
a
c

t
i
o

n
o

f
N

o
d

e
s

2000 nodes and 6 edges

Data

Binomial (Ceiling)

Poisson

Planck

Figure 6.4: Fitted discrete distributions from an example dataset, which was created using

2000 nodes and 6 edges. Only the binomial estimation using the ceiling operator to

discretize the parameters shows any resemblance to the desired data. [6]

Discretization
To apply the normal distribution to our given problem, the resulting distribution needs to

be discretized, i.e., turned from a continuous distribution in a discrete one. The main goal

is to keep the properties of a probability distribution, i.e., the sum of all points not equal to

zero needs to add up to 1.

A valid discretization can be constructed based on the cumulative distribution function

(CDF) over intervals, capturing the full support of the distribution, e.g., f(x) = CDF(x)
As we �t the distribution based on the points of data, the natural discretization can

be achieved by point-wise evaluation and re-normalization of the result. Let PDF be the

probability density function, then a new probability mass function with evaluation points

0, 1, . . . , t (the discrete equivalent to a PDF) is given by x ∈ {0, 1, . . . , t}

ft(x) =
PDF(x)∑t
s=0 PDF(s)

.

This approach can easily accompany special values at certain points. Therefore, the full

discretization of our normal distribution shall be:

f(0) =
1

n

f(1) =
k(2n− k − 1)

n2

f(x) =
PDF(x)

f(0) + f(1) +
∑t
s=2 PDF(s)

.

The maximum point t should be chosen in such a way, that the remaining error 1 −
CDF(t) ≤ ε is small enough for the given purpose.

Model Parameter Estimator
The previous section concluded that the distribution of shortest paths could be modeled

using a discretized normal distribution. Building upon this conclusion, we are further inter-

52 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

ested in the parameters µ and σ2
of a normal distributionN (µ, σ2).The parameters of the

normal distribution should only depend on the parameters of our network, the number of

nodes n and number of edges k.We are interested in functionsM,S,with a small error err
such that

µ =M(n, k) + err

σ = S(n, k) + err .

These are statistical estimators. To determine these, we �tted a large number of randomly

generated graphs and stored the resulting values forµ andσ.The determined functionsM,S
are approximated using the functional equations:

M(n, k) ≈ α ln(βn)

eγk
+ δ ln(ηn) +

ζ

eγk
+ ε,

S(n, k) ≈ a ln(bn) +
c

edk
+ e.

Here, the greek and fracture constants α to ε and a through e are determined by least-

square �tting of the function to the acquired data. Through a �t of experimental data, we

reached the following approximate functions:

M(n, k) ≈ 0.595 log(2.135n)

exp(0.314k)
+ 0.341 log(1.626n) +

0.241

exp(0.314k)
− 0.224,

S(n, k) ≈ 0.0345 log(0.925n) +
1.222

exp(0.301k)
+ 0.189.

Landscape

We used the �tted parameters for random graphs to determine the behavior of the parame-

ters. The ranges of the parameters depend on the size of the network n and the number of

connections created in each step k.

By splitting the dimensions based on n and k, an initial estimation is possible. The di-

mension dependent on k shows a behavior proportional to
1
ek
. The dimension dependent

on n, on the other hand, shows a behavior proportional to log(n), a square root behavior

could be excluded as �tted parameters easily overestimated the data. A random selection of

the dimensional analysis is shown in Figure 6.5.

The estimation of values for σ show much more pronounced residues in the form of

a saw-tooth function. The forms can be recognized from the similarly shaped but smaller

residues of the µ estimations. The values of σ show to be within 0.3 to 0.7, even for large

numbers of nodes n, e.g., n = 1 000 000. Further, the values seem to jump rapidly and

slowly descend, forming a saw-tooth pattern, which is hard to predict accurately. The pat-

tern arises as additional nodes in the network are more likely to create shortcuts than to in-

crease path length until the overall network diameter increases by one, steeply widening the

distribution - and therefore increasing the variance, i.e., σ.The likelihood of such an increase

follows its own probability distribution, which we did not determine for this thesis.

6.4. DISTRIBUTION MODEL 53

5 10 15
0

2

4

6

Edges

µ

n=10

n=100

n=1000

0 500 1,000 1,500 2,000 2,500
0

2

4

6

Nodes

µ

k=2

k=4

k=8

k=16

Figure 6.5: Datapoints for various graph sizes split by number of edges per node k and

number of nodes n. µ estimate �tted using
1
ek

for the number of edges and �tted using

log(n) for the number of nodes dimension. [6]

Estimator Models
Based on our one dimensional evaluation, we want to construct a two dimensional estimator

model M(n, k). Model candidates are based on possible combinations of our one dimen-

sional approximations, i.e., the partial derivatives are the derivatives of our observations:

∂M

∂n
≈ d

dn
log(n),

∂M

∂k
≈ d

dk

1

ek
.

The constructed models have various constants, denoted by greek lower case symbols.

These constants are not shared between the models but were independently �tted. The mod-

els are denoted by

M1(n, k) = α ln(βn) +
γ

eδk
+ ε,

M2(n, k) =
α ln(βn)

eγk
+ δ ln(ηn) +

ζ

eγk
+ ε,

M3(n, k) =
α ln(βn)

eγk
+ ε,

M4(n, k) =
α ln(βn)

eγk
− αδk

eγk
+

ζ

eηk
+
θ ln(ιn)

(κn)λn
+ ν ln(ξn).

We �t the parameters of the model based on our �rst dataset. The residuals of the �t pa-

rameters, i.e., the di�erence between the true value and estimation, shows a saw-tooth form.

This arises as additional nodes likely create shortcuts until the overall diameter of the network

grows.

To evaluate the performance besides this observed error, we created a new independent

dataset. We measured the di�erence between the calculated values by our model and the

actual �tted parameters. This di�erence corresponds to the bias of the estimator, which is

simply referred to as bias. Figure 6.6 shows the distribution of the bias of our models for µ.
For the µ estimation, model M2 and M4 perform the best. Model M2 requires less pa-

rameters thanM4, i.e., it is simpler, therefore we prefer modelM2.

54 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

1 2 3 4

−0.5

0

0.5

1

1.5

Model #

B
i
a
s

Fitted Dataset

1 2 3 4

Model #

B
i
a
s

Validation Dataset

1 2 3 4

Model #

B
i
a
s

Validation Dataset 2

Figure 6.6: Boxplot of the bias distribution of the µ-estimator, using the four models,

compared to the measured value. [6]

For the estimation of σ, none of the models performs exceptionally well. In general,

the observed sigma values are small and within the range 0.3-0.7, even for graphs using one

million nodes. As no model performed exceptionally well, but also not exceptionally bad,

we stuck with the simplest model, i.e., model 1. Figure 6.7 provides a discretization of an

example prediction for a dataset based on 2000 nodes and 6 edges.

0 2 4 6 8 10
0

0.2

0.4

0.6

Distance

F
r
a
c

t
i
o

n
o

f
N

o
d

e
s

Pointwise

Interval

Data

Predicted Normal

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Distance
C

u
m

m
u

l
a
t
i
v

e
F

r
a
c

t
i
o

n
o

f
N

o
d

e
s

Figure 6.7: Discretization of an example dataset using 2000 nodes and 6 edges. The

predicted normal distribution is based on parameters estimated using model 2 for µ and

model 1 for σ,with a point-wise discretization and an interval discretization, using

midpoint intervals. [6]

We can now use these values to compute concretept for a given network ofnnodes using

a k-growing approach from Section 6.3.

6.5 Privacy Discussion
In this section, we investigate the privacy impact of the protocol. The main challenge for

quanti�cation is the arbitrary topology and topology abstractions.

Model
Given a network of sizen,we have a set of attackersAof size |A|participating in the network;

therefore, n − |A| is the number of all fully honest nodes. The value β = |A|
n represents

the fraction of attackers within the network, which is the probability of selecting an attacker

6.5. PRIVACY DISCUSSION 55

when selecting a node from the network uniformly at random. Lastly, any node has an ex-

pected number of connections c > 1 to other nodes.

To locate a node in a �ood-and-prune broadcast, an attacker node registers an incoming

message through one of its c connections. Given the knowledge of the topology, the attacker

can separate the network in c many sets of nodes, where any node is in the same set, if a

broadcast from this node would reach the attacker via this connection. These sets are not

necessarily disjunct, as there may be multiple shortest paths between a node and the attacker.

To �nd a lower bound on the privacy e�ects, we assume the sets are disjunct, as this improves

the position of the attackers.

The expected size of such a set for a single attacker node will be
n−|A|
c , as an attacker

would not consider colluding attackers. For this model, we consider only untargeted attacks,

where attackers try to deanonymize any sending node, not a single particular node. In this

case, the ideal set of network nodes any attacker can distinguish based on a message is
n−|A|
c .

Further, ideal sets for attackers minimize the size of multiple observing attackers to the size

of
n−|A|
c|A|

.

Attackers can fully deanonymize a sending node once this size is below one. It follows

that attackers can correctly determine the location of a sender in this ideal setting, once more

than logc(n− |A|) attackers have received the message, as it holds, that

n− |A|
c|A|

≤ 1⇔ |A| ≥ logc(n− |A|).

Spreading Sub-Protocol

Given the required number of attackers, we are interested in when this number is likely

reached during the spreading protocol. Nodes that select neighbors may select nodes that

already participate in the protocol, so the tree sub-graph resulting from participating nodes

is not complete.

If all nodes select their neighbors uniformly at random from the full set of network par-

ticipants, this becomes a form of the coupon collectors problem in packs [102]. The coupon

collectors problem using packs describes the problem of receiving at least one of each coupon

when receiving coupons in packs of a given size. Here, the size of the packs is given by η, and

each network node represents a coupon.

Given a subsetA of all coupons, the random variableZ`(A) is the number of drawings

necessary to obtain at least ` elements ofA [102]. The expected value of reaching the required

number of attackersZlogc(n−|A|)(A) can be calculated using the results of Stadje:

E(Zlogc(n−|A|)(A)) =(
n

c

) dlogc(n−|A|)e−1∑
j=0

(−1)dlogc(n−|A|)e−j+1(
n
c

)
−
(
n−|A|+j

c

) (
|A|
j

)(
|A| − j − 1

|A| − dlogc(n− |A|)e

)
.

(6.3)

The number of drawings corresponds to the number of nodes participating in the pro-

tocol before reaching the required number of attackers. To calculate a lower bound of the

depth of the η-adaptive di�usion dissemination tree at this point, we invert the calculation

of the number of nodes in a complete tree.

56 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

Zlogc(n−|A|)(A) ≥ 1 + (η + 1)

t−2∑
i=0

ηi (6.4)

⇔t ≥ logη

(
1−

(Zlogc(n−|A|)(A))(1− η)
η + 1

)
+ 1 (6.5)

Table 6.1 provides an overview of the evaluation of this function when 5% of the network

is colluding. It shows that for low values of η a signi�cant depth can be reached, as four steps

in a network with an average degree of c = 8 results in a candidate pool for the true source

for approximately c4 = 84 = 4096.The likelihood of any of the candidate nodes being the

true source depends on the distribution f of Section 6.3.

Table 6.1: Expected tree depth for an attacker fraction of β = 0.05 before

deanonymization of the virtual source.

η
n

100 1000 10000

3 4.3 3.9 7.8

5 2.5 2.7 2.7

10 1.6 1.7 1.9

Virtual Source Sub-Protocol
A node received additional information when chosen as the virtual source. An attacker is

chosen as the virtual source with probability

P [virtualsource ∈ A] = |A|
n− 1

.

In this formulation, a successful selection occurs when the virtual source is an attacker.

This is a simple Bernoulli trial, so the geometric distribution gives the expected number of

trials until a success occurs as

E(P [virtualsource ∈ A]) = n− 1

|A|
≈ 1

β
.

For a reasonable network size (n > 100) this value stays above 6 for fractions of attackers

below β = 0.166. This result is expected, as the process of virtual source selection mimics

the privacy-optimal process of the work by Bellet et al. [19] with a muting parameter of s = 0
and earlier similar results.

6.6 Future Work
There are various smaller improvements possible to increase the privacy or e�ciency of the

protocol. First, instead of switching to a �ood-and-prune from the last virtual source node,

the protocol could instead trigger the �ood-and-prune broadcast from all leaf nodes. The last

message transmission message, see Algorithm 12, would instruct leaf nodes to start a �ood-

and-prune process. This would reduce leaks of information during the �ood-and-prune pro-

tocol and improve the e�ciency of the protocol.

6.7. CONCLUSION 57

To improve resistance against linkable broadcasts and to hinder an attacker in the �rst

step, the current timestep t may be randomized on initiating. This would also require the

originator to use a spreading message �rst, as the initial transmission would otherwise be

special, as a node should only receive the virtual source after receiving a spreading message.

The protocol has little guards against non-participation attacks and communication fail-

ures, which could be mitigated through retransmissions and time-outs. While allowing the

protocol to complete, these would still reduce the e�ciency of the protocol in selective non-

participation attacks. As those do not prevent every connected node from receiving the mes-

sage and do not diminish the privacy results, we did not tackle these in this paper.

Lastly, a more extensive privacy analysis would bene�t the protocol. Due to the lack of

topology information, the privacy analysis is limited in its applicability. A more accurate

result could be achieved for speci�c topologies or considering distributions over topologies.

6.7 Conclusion
In this chapter, we transformed the adaptive di�usion protocol [46] into a protocol for peer-

to-peer networks. To achieve this, we remodeled the virtual source passing probabilities in

a more general way, based on the distance distribution of the underlying network and im-

proved the attacker model by removing information from protocol messages. Further, we

provide a privacy-friendly solution to solve these equations, while smoothing out otherwise

unachievable states.

We analyzed expected k-growing network topologies, which behave similar to real-world

peer-to-peer network growth, for their distance distributions. The analysis showed the dis-

tances in the networks to be approximately normally distributed. Lastly, we performed a pa-

rameter analysis of the resulting normal distributions, showing that µ and σ of the normal

distribution can be approximated by a combination of logarithmic and inverse exponentials.

The provided results allow for a concrete instantiation of this revisedη-adaptive di�usion

to be used in 3P3 as a phase II protocol.

58 CHAPTER 6. 3P3: N-ADAPTIVE DIFFUSION

Chapter 7

Security and Privacy

This chapter presents results of previous publications [4, 5] (with permission, © 2018 IEEE).

[4] D. Mödinger and F. J. Hauck. “3P3: Strong Flexible Privacy for Broadcasts”. In: 4th
International Workshop on Cyberspace Security (IWCSS 2020). 2020.

The previous chapters introduced 3P3, a strong privacy protocol for broadcasts. While we

discussed some privacy and security implications of the design in the chapters detailing each

phase, the overall security and privacy discussion of 3P3 remains.

In this chapter, we �rst discuss the security and robustness of 3P3 in Section 7.1. Further,

we analyze the privacy aspects of 3P3 in Section 7.2.

7.1 Security: Functionality under Attack

For the protocol to be considered secure and correct, all non-malicious nodes should receive

a disseminated message. It is su�cient to show that the last phase will always be reached and

that it ful�lls the desired requirements. Therefore, after introducing the considered attacker

model, we work backwards from the last phase.

Attacker Model

The base model for the network, cf. Section 2.2, especially includes a connected graph after

removing all malicious nodes from the network. Malicious nodes are interested in preventing

a message from being broadcast. They are considered successful if any honest nodes do not

receive the message, despite all honest nodes forming a connected graph.

Attackers are computationally limited, they are especially not able to break cryptographic

primitives, such as decrypting messaged without the proper key. As channels and transac-

tions use strong cryptographic primitives, the restriction results in authenticated and secure

channels and messages. Attackers act as participants of the network, not as internet service

providers, hardware vendors or other outside entities. We do not consider vulnerabilities

of implementations or general systems security. Intuitively, we limit the attackers to exploit

weaknesses in the protocol by sending, forging or inserting messaged or by refusing partici-

pation.

59

60 CHAPTER 7. 3P3: SECURITY AND PRIVACY

Phase III: Flood-and-Prune Broadcast

When removing malicious nodes, the network remains a connected graph, based on the net-

work requirements. Therefore, there exists a path between any node and the initiator of

the �ood-and-prune broadcast. The communication can be reduced to any two neighboring

nodes, with one receiving the message. The node will forward it to the neighbor, propagating

along all available paths. This process is una�ected by non-participation or message injection.

Therefore, we only require reaching the �ood-and-prune stage and having an honest initiator

to reach all nodes.

Phase II: Di�usion

We restrict the discussion to the virtual source sub-protocol. Reaching Phase 3 only hinges

on this sub-protocol, so this restriction is warranted.

Let vc be the current virtual source node and vp the previous virtual source node. We

can separate two cases. Either, vc is fully uncooperative, i.e., sends no correct message. Alter-

natively, they are partly uncooperative by only sending correct messages back to vp. Other

cases, such as randomly sending correct and incorrect messages, can be treated as the partially

uncooperative case.

Fully uncooperative: vp will not detect any correct messages. Therefore, the timeout of

vp will trigger, marking vc as failed and continue the protocol itself. As a connected graph is

available, even after removing all malicious or failed nodes, the protocol can continue even-

tually.

Partially uncooperative: vp will not be able to distinguish this case from a fully functional

run of the protocol. This situation is the case for all previous virtual source nodes. Either, the

attacker switches to a �ood-and-prune broadcast, but only forwarding it towards vp or the

attacker will send in�nite di�usion messages. In the case of the �ood-and-prune broadcast,

the protocol is successful, due to the connected network. To combat in�nite di�usion mes-

sages, vp determines a maximum bound of messages they should observe, based on the state

of the timestep counter s they received. A malicious node can therefore not send endless

messages towards vp to stall progress towards Phase 3.

Based on the observation that both cases are dealt with, the last phase will be initiated

if there is any available honest virtual source. Therefore, to reach all nodes, we only require

reaching the di�usion stage and having an honest initiator of the di�usion stage.

Phase I: Dining-Cryptographers Network

The �rst instance of the DC network corresponds to the protocol by von Ahn et al. [12] with

m = (r, `,K). Therefore, round one exhibits the same correctness, robustness, fairness

and anonymity as the von Ahn protocol, which is secure as long as computing the discrete

logarithm is considered hard. Whereby robustness means either the protocol succeeds, or an

attacker is exposed, so the protocol will eventually succeed for �nite attackers.

On successful transmission of the second instance, all participants will receive the same

list of messages [m1, . . . ,mi], as shown previously. The commitments of round two are cre-

ated using a PRNG, whose seed is Ki from the previous instance. If a collision occurs, the

legitimate message sender can validate the commitments as zero commitments, as they know

r = Ki and the commitment. If a commitment does not reveal to be zero, the legitimate

message sender will inject a blame message in the next protocol instance. The blame replaces

the message identi�ers r, `,K and contains the seed, the blamed participant as well as a round

7.2. PRIVACY 61

identi�er and message identi�er. Other participants can verify the seed and that the commit-

ment is not zero, and exclude the attacker. An honest participant can not be blamed without

breaking the security assumption of the underlying commitments.

The case of non-cooperation by participants can be handled similar to von Ahn et al. [12]

by sharing encrypted instances of all {(sself,j , rself,j)}j pairs with every participant, allow-

ing for reconstruction of the contents with selective non-cooperation. This creates consid-

erable additional load, so forming of a completely new group might be more economical.

As all sub-protocols are robust, we conclude 3P3 to either succeed or remove an attacker

and therefore to be robust in its entirety.

Further Security Concerns
Besides the basic function of the protocol, we would like to note some security concerns.

We do not consider con�dentiality, as we are dealing with a broadcast protocol. Similarly, to

keep messages smaller by default, we have no additional integrity checks, especially as these

are often included in application protocols. Any application that requires integrity or con�-

dentiality needs to provide application layer solutions.

Lastly, a node holding the virtual source token can decide to start the last phase of the

protocol early. Nodes, beside previous virtual source nodes, can not distinguish this situation

from a valid phase switch, but the privacy impact and incentives for this attack are low.

7.2 Privacy

For the sake of privacy discussion, we will use the notion of k-anonymity. Hereby k is the

number of participants indistinguishable from the true originator, which optimally would

be k = |participants| − |attackers|.

Independence of DC Network and Di�usion
Messages sent after completion of phase I, especially any messages of phase II and III, must

not provide further insights into the group to keep the privacy guarantees of the DC net-

work. The second phase is started by transmission of the messagem and the elements (v, s =
1, r = H(m)). The element s = 1 identify that a new di�usion run is started but are in-

dependent of any contents, i.e., they are �xed for all possible runs. As v identi�es the sender,

v must be part of the originating DC network. Within the network, v was chosen by the

originator, indirectly through a random identi�er. This random identi�er is not transmitted

further, so no clues about group participants can be inferred. Therefore, the DC network

can keep its privacy guarantees intact.

Global Passive Attacker
Revelations over recent years have shown that service providers and intelligence agencies

across the world are collecting and analyzing information, coming reasonably close to a global

passive attacker. If such an observer could collect all slices si,j of a participant, they could

recompute the original message sent by the participant. This is prevented by authenticated

encrypted channels between participants.

To prevent tra�c correlation, DC networks require all participants to send the same

amount of data, not just the sender. While a global passive attacker can detect the commu-

62 CHAPTER 7. 3P3: SECURITY AND PRIVACY

nicating DC groups and the broadcast message, they can not identify the originator within

the group [12, 32]. Against this attacker, phase one provides k = |group|-anonymity.

Dining-Cryptographers Network Insider

To improve the detection of DC group participants, an attacker has to be part of the group.

For β attackers within the group, DC-based communication trivially provides (k − β)-

anonymity. The anonymity guarantees depend on the group formation mechanism [12].

Current strategies of a random selection of participants with an assumed attacker probability

p require group sizes of
2k
1−p for k-anonymity with high probability [12]. These bounds de-

pend on the attacker probability distribution. External trust information during the group

formation could improve the probability distribution.

Honest but Curious Botnet-like Attacker

The previous sections covered attack vectors against the DC network, i.e., an attacker on the

outside and attackers on the inside. Therefore, we will focus on the privacy provided within

the di�usion phase, as an improvement over the guarantees by the DC network.

An honest but curious attack, where nodes follow the protocol honestly but try to vi-

olate the privacy of the protocol, could be performed by a single computer or a deployed

botnet. The attackers connect to as many participants as possible and collect every message

they observe. This behavior can be seen often, e.g., by research groups [76] or information

crawlers.

The original analysis of Fanti et al. [46] for adaptive di�usion gives a worst-case privacy

estimate, as our modi�cations only limit the exposure to possible attackers. Based on this,

we provide the argument for improved privacy over the DC network.

If an attacker were to receive the virtual source token, they could easily compute a can-

didate pool of ds candidates, with s the current depth of the di�usion phase and d the

expected degree of the graph. For most sensible con�gurations, it holds for s ≥ 0 that

ds > groupsize improving the privacy of previous steps. Attackers with a penetration

p = |attackers|
n of the network, will receive approximately p · |broadcasts| of all �rst virtual

source messages. This group increases further for participants of the spreading protocol,

which never receive a virtual source message.

Consider two models: An attacker who creates a single connection to all nodes and dis-

tributed attackers with a network penetration of p = | attackers |
n but normal behavior in re-

spect to number of connections created. LetX be the random variable modeling the number

of attackers chosen for a run of the spread sub-protocol. The probabilityP (X ≥ 1) of hav-

ing at least one attacker included and the expected number of connections to attackers per

nodeE(X) are
η
d for a single attacker. For the distributed attackP (X ≥ 1) = 1−(1−p)η

and E(X)ηp.At step t the expected amount of attackers hit are

Et(X) = E(X)

t−1∑
i=1

ηi = E(X)(
ηt − 1

η − 1
− 1).

Lastly, the forwarding probabilities are determined so that the deviation from perfect

hiding is optimal, see Section 6.2.

7.3. CONCLUSION 63

7.3 Conclusion
In this chapter, we established the robustness and privacy of 3P3. First, we showed that 3P3

will succeed if the �ood-and-prune phase of 3P3 is reached and that the phase is reached as

long as the adaptive di�usion phase is reached. As the �rst phase of 3P3 is based on the pro-

tocol by von Ahn et al., we showed that it ful�lls the same robustness criteria, i.e., it either

makes progress or removes an attacker, and will then reach the adaptive di�usion stage. These

results combined, show that 3P3 in total is robust in the same sense.

In the second part of the chapter, we analyzed the privacy properties regarding various

attacker models. The DC construction provides k-anonymity against global passive attack-

ers and anonymity in the number of non cooperating participants within the group. The

adaptive di�usion stage extends this guarantee in an honest but curious setting, which is

commonly seen through probing nodes or unobtrusive botnet attacks.

These results prove the ability of 3P3 to function in real-world networks and provide the

expected privacy guarantees.

64 CHAPTER 7. 3P3: SECURITY AND PRIVACY

Chapter 8

Performance

This chapter presents results of previous reviews publications at IWCSS [4] (with permission, ©
2018 IEEE) and ArXiv [9].

[4] D. Mödinger and F. J. Hauck. “3P3: Strong Flexible Privacy for Broadcasts”. In: 4th
International Workshop on Cyberspace Security (IWCSS 2020). 2020.

[9] D. Mödinger, A. Heß, and F. J. Hauck. “Arbitrary Length k-Anonymous DC Com-

munication”. In: (2021). arXiv: 2103.17091 [cs.NI].

This chapter is dedicated to the performance analysis of 3P3. The performance analysis is

split into three parts. First, we take a look at the expected bandwidth consumption from

a theoretic perspective by calculating the expected size of messages. Secondly, we evaluate

the proof-of-concept implementation with a focus on phase I, due to the size of networks

involved. Lastly, we apply a simulation to evaluate large networks running 3P3.

8.1 Bandwidth Consumption

The most performance-critical part of our system is phase one. Due to the nature of DC

networks, we expect the group phase to mostly scale with bandwidth with little in�uence by

latency.

Given a commitment and randomness of 32 Bytes size, e.g., using Pedersen commit-

ments [90], we can commit on 31 Bytes at a time. This results in 2 × 2k(4 + 32k) bytes

for the DC round and 2k × 32 bytes for commitments during the initial round. The �nal

round requires 2× |m| × (k − 1) bytes for the DC round and 2× 32(k − 1)× d|m| 3231e
bytes of commitments.

Assuming a group size of 15, as used on the blockchain level in Monero, and a message

length of 1024 Bytes, the magnitude of common Bitcoin transactions, we determined the

bandwidth consumption of phase one. A participant will send≈ 1.34MiB of data and re-

ceive≈ 18.83MiB for a full round. To only compute the initial round of phase one, which

is independent of any message size, a participant sends≈ 434KiB and receives≈ 6.09MiB.

While these numbers can be handled quite easily by modern network devices, as they are on

the scale of modern websites, it is easy to see that it does not scale well beyond sizes of around

30 to 40 privacy-group participants. These sizes are sensible privacy settings, comparable to

settings used in other strong systems [122].

65

https://arxiv.org/abs/2103.17091

66 CHAPTER 8. 3P3: PERFORMANCE

8.2 Proof-of-Concept Implementation

Methodology
To evaluate the performance of our protocol we build a prototype implementation. The

implementation was deployed via docker containers on a single machine with 32 physical

cores and 2 threads per core. We repeated experiments 100 times to improve con�dence in

the results. All software and experiments are available as open-source software, including

an explanation for reproduction, on GitHub
1
. We used the optimized secure variation with

prepared commitments and no validation during successful rounds for the evaluation of the

secure version.

We introduced an arti�cial network latency of 100ms and used tra�c control to limit

bandwidth per interface to 50Mbit/s to achieve more realistic results. The values are estimates

based on common usage [54]. We used a �xed message size of 512B as an approximation of

Bitcoin transaction sizes. We performed an experiment with multiple message senders, which

is equivalent to longer messages.

A central container was used to manage the connections, setup and logging of all other

deployments. To run more nodes on the single machine, we used an approximation of cryp-

tographic operations. We performed a real-time benchmark of the relevant cryptographic

operations on the machine, resulting in 0.0109ms for point addition and 0.6698ms for

scalar multiplication. Overall this results in a 1.35ms commitment over the elliptic curve

secp256k1, greatly simplifying the setup.

Number of Participants
For the �rst comparison between the unsecured and secured protocol versions, we looked at

the scaling behavior based on the number of participating nodes. For evaluation purposes,

the nodes use their node id as the slot index to prevent collisions during the �rst round. We

scale the system from 8 to 24 participants in increments of 2 for both the secured and unse-

cured version. We �xed the number of threads for the secured version to 4 and the number of

senders to 4, which results in a message size of 2KB. This experiment is codi�ed innodes.sh
in our code repository.

The results of the experiment for scaling by the number of participants are visualized

in Figure 8.1. Please note that the visualization uses a logarithmically scaled y-axis. While

the secured version quickly increases in the time taken per instance, the unsecured version

performs at nearly constant speeds. Further, the unsecured version takes around 0.5s per

protocol instance.

For large numbers of participants, we would expect the unsecured version to scale simi-

larly to the secured version. Though, for the numbers at hand, the bandwidth and computa-

tion complexity are not dominant over the transmission latency. For a similar setup as in the

previous discussion, i.e., at most a 5% utilization, we can sustain four parallel messages every

10s or
2KiB
10 s = 204.8B s−1.With full utilization we reach

2KiB
0.5 s = 4KiB s−1.This speed

is su�cient for most text-based applications.

Number of Senders and Message Size
For the second comparison, we looked at the scaling based on the number of senders within

a protocol run. This is equivalent to the message size, as we �xed the slot number per node

1https://github.com/vs-uulm/3p3-evaluation

https://github.com/vs-uulm/3p3-evaluation

8.2. PROOF-OF-CONCEPT IMPLEMENTATION 67

Figure 8.1: Comparison of minimum, median and maximum runtime for various numbers

of participants. Note that the vertical axis is in log-scale. [9]

to prevent collisions. We did not perform this experiment without �xed slot numbers, as the

expected number of collisions and repetitions can be calculated directly.

We �xed the number of participating nodes to 20 with 4 threads for the secured variant of

the protocol. The number of senders swas changed from 1 to 20 in increments of 1, resulting

in message sizes of s× 512B.This experiment can be executed through messages.sh.

The visualization of the results can be found in Figure 8.2. Again, we can see the per-

formance of the unsecured variant barely budge under the generated load, while the secured

variant scales as expected. In the optimized unsecured variant, the message size does not in-

crease the runtime of the system noticeably.

We can combine this with our result from the previous experiment to improve our pre-

vious bound to
10KiB
0.5 s = 20KiB s−1. As the experimental results did not consider larger

messages, this provides no upper bound on the transmission e�ciency. For n participants,

the available bandwidth b of a node will provide an upper limit of
1
2nb to the transmission

e�ciency of the system, as the message has to be transmitted 2n times for a successful trans-

mission.

Comparison
An interesting performance comparison for the introduced protocol can be found in Dissent.

While Dissent [36] ful�lls a di�erent purpose than our protocol, it provides similar levels of

privacy. Performance-wise, the core mechanism of dissent requires multiple seconds, up to

minutes, for a message round. The updated version [122] shows transmission times from 0.5

to 10 seconds for their message exchange process. These results use realistic latency distribu-

tions through a Planetlab setup, which provides similar latency to our estimated 100ms [53].

68 CHAPTER 8. 3P3: PERFORMANCE

Figure 8.2: Comparison of minimum, median and maximum runtime for various numbers

of messages. Overall message length is equivalent to 512 times the number of messages. [9]

The proposal by Wang et al. [115] provides lower latency, 50-100ms, in a 3-hop setup with

only 4 to 6 group participants. Assuming a latency comparable to our setup, the communi-

cation latency should increase to at least 330ms, based on the results presented. Due to the

protocol structure, a much higher latency is to be expected.

Further, we compare the performance of our protocol to the protocol proposed by von

Ahn et al. [12]. Since there is no source code available, accompanying their publication, we

implemented our own version that only marginally deviates from their speci�cation. In-

stead of utilizing Pedersen Commitments over large prime �elds, we utilize Elliptic Curve

Pedersen Commitments similar to our own protocol. We executed the experiments with a

varying number of participants and three di�erent message sizes. Figure 8.3 visualizes the

performance of the non-optimized version of our protocol with k and
k
2 senders and the

performance of our implementation of the von Ahn et al. protocol. While our protocol

is slower for 512B messages, it approaches the performance of the von Ahn et al. protocol

with 1024B messages, and noticeably surpasses its performance with 2048B messages. Ad-

ditionally, it can be observed that while our protocol scales with the number of senders, the

protocol proposed by von Ahn et al. can create signi�cant overhead if the number of paral-

lel senders is low, because its runtime is only a�ected by the number of participants and the

message size used.

Lastly, the strategy employed by Bitcoin (see Chapter 10) leads to an average dissemina-

tion latency of �ve seconds to reach 50% of the network. 3P3 can improve this time by 80%

while reaching the full network.

8.3. SIMULATION 69

Figure 8.3: Comparison of our protocol and the von Ahn et al. protocol with di�erent

message sizes. Median runtime of several protocol runs. [9]

8.3 Simulation

Simulation Methodology

To evaluate our algorithm further, we built a discrete event simulation
2

for random net-

works. We implemented a skeleton of 3P3, where all message types and �ows exist, but pro-

cessing takes only simulated time, e.g., commitments take 0.5ms
3
. We implemented adap-

tive di�usion, �ood-and-prune and a simpli�ed Dandelion broadcast for comparison. Com-

munication delay between nodes is based on a normal distribution N (µ = 80, σ = 15)
clamped between 20ms and 200ms. The values are estimates from well-connected clients of

Hoiland et al. [54].

To generate a network, nodes create connections sequentially, until they have c connec-

tions. This construction results in c connections for most participants, but more for early

participants.

We varied the parameters of the simulation by the number of participating nodes (100 to

10000, using steps of 1, 2.5 and 5 times 10x), created connections between nodes (8 to 20, in

increments of 2), the depth of the di�usion phase (up to 8) and the spread of the di�usion

(up to 8). We repeat all parameter combinations for 50 runs. A simulation run creates a

random network and initiates a single protocol run until no messages are left.

Network Size

An overview of the results for scaling based on network size is shown in Figure 8.4, using the

median, 99th and 99.9th percentile. This representation allows for analysis of the expected

and worst-case performance of the protocols. Please note the logarithmic spacing of the x-

axis.

The �ood-and-prune entry provides a baseline for evaluation. The results show that the

anonymity phases mostly dominate 3P3. Overall the performance of our system is reasonable,

while noticeably slower than the baseline. We did not include results for the 99th percentile

of Dandelion, which has, due to its random nature, fairly large outliers.

2
Available here https://github.com/vs-uulm/netsim2.

3
Average computation time of a commitment on our simulation hardware.

https://github.com/vs-uulm/netsim2

70 CHAPTER 8. 3P3: PERFORMANCE

100 250 500 1000 2500 5000 10000
network size [nodes]

0

200

400

600

800

1000

1200

tim
e

[m
s]

Our Protocol

100 250 500 1000 2500 5000 10000
network size [nodes]

0

200

400

600

800

1000

1200
Adaptive Diffusion

100 250 500 1000 2500 5000 10000
network size [nodes]

0

200

400

600

800

1000

1200
Flood and Prune

100 250 500 1000 2500 5000 10000
network size [nodes]

0

200

400

600

800

1000

1200
Dandelion

50.0th percentile
99.0th percentile
99.9th percentile

Figure 8.4: The median, 99th percentile and 99.9th percentile of full protocol instance

latency, i.e. until no more messages related to that protocol instance remain. Dandelion

only shows the median, as the 99th percentile is far o� the top of the chart due to its

random phase switch. Network sizes are scaled logarithmically. [4]

Number of Connections and Di�usion Depth
We chose the number of connections between nodes to stay above the log(n) connectedness

boundary [58, Ch. 4]. The amount of connections is relevant to keep the preconditions

intact as a fully connected network, even in the presence of malicious nodes. Minimum

connections per node had a minuscule impact on the overall performance.

Similar to the number of connections of nodes, the di�usion depth had little impact on

overall results. The trend in runtime for longer di�usion runs was noticeably upwards, but

negligible compared to other factors.

Di�usion Spread
We expected the spread limitation of adaptive di�usion η to have some impact on the num-

ber of nodes reached over time, but not on total runtime. The visual analysis of Figure 8.5

indicates a di�erence in the base distribution for reaching 50% and 75% of the network. The

results for 99% are inconclusive, which is expected. The meansmη and con�dence intervals

forη = 2 andη = 8,which arem2 = 640.23ms±0.34ms andm8 = 615.60ms±0.27ms.,
support this interpretation, as they are strictly non-overlapping. This holds for all interme-

diate values of η as well. Overall the cost is small compared to the privacy gain of reducing

η.

8.4 Conclusion
In this chapter, we evaluated the performance of 3P3 and its parts using a simulation and

proof-of-concept implementation of 3P3. We calculated the expected bandwidth consump-

tion and validated the results with experiments using limited bandwidth links. All experi-

ments show practical applicability of 3P3 in real-world scenarios with real-world bandwidth

limitations.

The optimized group stage of 3P3 takes only 0.5 ± 0.1s in high latency environments,

i.e., 100ms per link. The results are consistent with our simulation results, demonstrating

that 3P3 performs well in larger networks with better performance than Dandelion and only

half to one-third of the speed of a �ood-and-prune broadcast. The performance is su�-

cient for many text based protocols and especially for small payloads, which are common

in blockchain systems.

8.4. CONCLUSION 71

0

2

4

6

8

10

400 500 600 700 800 900 1000

0

2

4

6

8

10

400 500 600 700 800 900 1000

0

2

4

6

8

10

400 500 600 700 800 900 1000

η

Time to Reach 50%

η

Time to Reach 75%

η

time [ms]

Time to Reach 99%

Figure 8.5: Behavior of the protocol based on η. [4]

72 CHAPTER 8. 3P3: PERFORMANCE

Part III
Privacy Extensions

73

Chapter 9

Overview

In the previous part of this thesis we introduced 3P3, a privacy-preserving protocol for broad-

casts. 3P3 ful�lls the important role of providing strong and �exible privacy during message

dissemination. This role is not the only privacy sensitive operation surrounding broadcasts

in peer-to-peer networks. Measurements, enhancements for dining-cryptographers groups,

group creation and network organization have signi�cant privacy impact as well.

In this part of the thesis, we discuss additional privacy enhancements around 3P3 and

broadcasts. This chapter provides a quick overview over the topics introduced in the follow-

ing chapters: unobtrusive monitoring of Bitcoin, the fusion of threshold cryptography and

dining-cryptographers networks, as well as Pixy, a privacy increasing group creation scheme.

9.1 Unobtrusive Latency Monitoring

Applications and network health and optimizations often depend on network metrics. For

Bitcoin, the most widely known blockchain system, a few large scale operations are known to

collect information on the network: bitnodes and two research groups [81, 85]. These metrics

are collected using thousands of connections, i.e., one connection to any reachable node in

the network. While these external resources are su�cient to compare the performance of

3P3 against real-world data, they are not geographically diverse. Further, nodes interested in

network metrics have a hard time replicating this approach and are easily detectable by other

nodes. This detection might lead to reduced cooperation from other nodes or malicious

entities attempting to feign or modify collected metrics.

In Chapter 10 we discuss a scheme to approximate broadcast dissemination latency met-

rics with only few connections. This allows for unobtrusive monitoring, i.e., undetectable

by other participants. We achieve this by modeling the latency of the Bitcoin network using

a log-normal distribution. The distribution is initially determined by observing the network

over geographically diverse locations and multiple points in time, to ensure stability of the

results over time and space. The resulting dataset is made available as validation and compar-

ison data for protocols such as 3P3. Later, we validate the results of our novel scheme over

small sub-samples of the collected dataset.

Lastly, we use an approach borrowed from Kalman �lters, sampling and error models to

reduce noise in the few measuring signals. The chapter provides an evaluation of the results,

showing real-world applicability over the collected datasets.

75

76 CHAPTER 9. OVERVIEW

9.2 Dining and Threshold Cryptographers
Various protocols, including 3P3, use dining-cryptographers groups [32] for privacy. DC

groups provide strong privacy, but the lack of e�ciency makes a layering approach lucrative

for most applications. Non-cooperating participants can lead the layers built on top of the

dining-cryptographers group to fail. To incentivize participants in these layers, instead of

only detecting their misbehavior. We propose a novel combination of dining-cryptographers

groups and threshold cryptography. The novel protocol can be used as a alternative to phase

I of 3P3.

Chapter 11 details the system combining dining-cryptographers groups with Shamir’s se-

cret sharing. In this scheme, each group participant only recovers a share of a message. Only

through cooperation can participants recover the actual message. This cooperation can be

achieved by broadcasting the shares. Only when the threshold set by the scheme is crossed,

can all participants decrypt the message.

This scheme allows for enforced k-anonymity using the threshold cryptography proper-

ties while maintaining privacy through the dining-cryptographers construction.

9.3 Privacy-Increasing Group Creation
There are various protocols applying dining-cryptographers groups, i.e., groups of restricted

size compared to the full network. Examples for such networks are the k-anonymous mes-

sage transmission protocol [12] or the previously introduced 3P3. The protocols rely on the

integrity of the underlying groups.

The protocol by von Ahn et al. assumes random selection of participants and constructs

an expected group size of
2k
1−β for an anonymity level of k and a fraction of attackers β.

Groups created using this scheme reach signi�cant sizes quickly, degrading performance of

the protocol.

To improve on this bound, by raising the trust in participants, we propose Pixy [3]. Chap-

ter 12 details the construction of Pixy, a novel privacy-increasing group creation scheme. Pixy

classi�es and applies suitable detection mechanisms in a two stage protocol to detect impos-

tors and less trustworthy nodes. This allows for smaller, and therefore more e�cient, groups

while maintaining privacy guarantees of the dissemination protocols.

Chapter 10

Unobtrusive Monitoring

This chapter is based on a previous publication at Plos One [7] and data published at Zen-
odo [8].

[8] D. Mödinger and F. J. Hauck. Bitcoin Network Transaction Inv Data with Java Times-
tamp and Originator Id. https://doi.org/10.5281/zenodo.2547396. Jan.

2019.

[7] D. Mödinger, J.-H. Lorenz, R. W. van der Heijden, and F. J. Hauck. “Unobtru-

sive monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer

network”. In: PLOS ONE 15.12 (Dec. 2020), pp. 1–21.

In previous chapters we introduced Bitcoin [84] and its underlying peer-to-peer network.

Bitcoin, and other blockchain systems, provide an abstraction layer for applications to build

upon. Many of these applications, such as an automated teller machine (ATM) [121], �le stor-

age [1] or, in general, marketplaces [105], rely on low latencies. They provide user feedback for

expected duration of an operation or reduce their operational risk, e.g., by estimating how

long it would take to notice a double-spend transaction. The dissemination data of a real

world blockchain system has further uses for advanced privacy protocols as well. The col-

lected data can be used to model behavior of network participants for evaluation of network

protocols.

Live monitoring data on the dissemination times in Bitcoin is available by third parties

in large scale measurements, e.g., by Bitnodes
1

and research [81, 85]. While an interested

user could use the data produced by these third parties, this would introduce a, possibly

unwanted, dependency on these parties. Users would also need to trust these parties and

their provided data to be correct, reliable and up to date. Participants could also apply the

measurement techniques directly, but these require a large amount of resources, as connec-

tions to the majority of network participants are required. This approach is thus infeasible

for typical network participants. Furthermore, this approach is rather conspicuous and does

not scale to a large number of users.

In this chapter, we enable live measurements of transaction-dissemination latencies in

Bitcoin in an unobtrusive fashion. This approach is accessible to typical network partici-

pants, using only eight connections, which is the minimum number of connections in Bit-

coin. This chapter reaches this goal by:

1https://github.com/ayeowch/Bitnodes

77

https://doi.org/10.5281/zenodo.2547396
https://github.com/ayeowch/Bitnodes

78 CHAPTER 10. BITCOIN MONITORING

• Providing a dataset of Bitcoin network transmission data, collected over various places

in time spread over the world.

• Providing a dissemination-latency model using a lognormal distribution and discussing

alternative models.

• Providing an approach to adapt the parameters of such a lognormal distribution to

new observations, e.g. changes in the network, with an unknown shift parameter.

• Providing a tool estimating the parameters of a lognormal distribution modeling la-

tencies if transaction-dissemination with only eight connections, verifying our previ-

ous contributions.

While the implementation relies on behavior speci�c to Bitcoin, the general approach

is not as limited. The isolation and estimation of dissemination latencies can be applied to

various broadcast networks and mechanisms, e.g., peer-to-peer queries.

The structure of this chapter is as follows: Section 10.1 discusses existing network-latency

measurement strategies, while Section 10.2 discusses the relevant background of this chapter

and the general circumstances of measuring within Bitcoin. In Section 10.3 we provide an

overview of our network monitoring solution, which uses few connections. Sections 10.4

to 10.7 focus on aspects of the network monitoring and its evaluation. Section 10.4 gives

details on the data collection and the resulting data sets. Section 10.5 focuses on the interpre-

tation and modeling of the collected data. In Section 10.6 we describe the process to deduce

similar results with much fewer connections by a Bayesian mechanism. Lastly, in Section 10.7

we show the experimental evaluation results of the Bayesian mechanism based on the col-

lected data. An visualization of the aspects of this chapter is given by Figure 10.1.

Figure 10.1: Visualization of the aspects of this chapter: Data collection, modeling and

monitoring. [7]

10.1 Related Work

Monitoring network properties, such as latency, is widely applied in a multitude of di�erent

network types. In this section, we discuss di�erent approaches to latency measurements in

similar network environments.

10.1. RELATED WORK 79

Internet-Protocol Latency Measurements

Measurements in general internet-protocol (IP) networks are a common denominator of net-

work measurements. Although, most IP-level measurements target single-path latencies in-

stead of dissemination latencies.

Yu et al. [124] for example, use an active measurement approach in Software-De�ned

Networking. They instruct the network devices to route speci�c control packets through

the monitored path. Then they send timestamped packets through the established route.

The measured time di�erence is used to estimate the latency of the targeted path. The es-

timation is required as there is noise introduced by �uctuations in network behavior and

latency introduced through traveling from and to the in and out routers of the target path.

To compute the latency estimates from their measured timestamps they use an estimation

distribution, an approach applied on a larger scale in Section 10.5. The active approach they

use still produces strain on a large network and does not scale to the distributed approach

required for measuring a broadcast. Breitbart et al. [28] use a similar approach.

Others [98, 117] use passive monitoring. This requires sharing of collected information

to compute a global view on the information, which poses some challenges in a distributed

system. While this creates reliable data, as long as participants are honest, it also creates ad-

ditional tra�c for information sharing. Shaer et al. [98] use a passive approach to measure

latencies and other network properties in IP multicast environments. They build on the sepa-

ration of data collection and processing for high-speed analytics. The approaches also require

control, or at least dependence and trust, over many network participants to produce reliable

results. We attempt to minimize these, due to the negative e�ects of dependencies and the

trust model of Bitcoin. To reduce network overhead we infer the desired information from

regular tra�c instead of active sharing of measurements.

Peer-to-Peer Latencies

Bitcoin is built on top of a peer-to-peer network, therefore measuring techniques used in

peer-to-peer networks, in general, might apply. Classical peer-to-peer networks are built on

the idea of sharing and, more importantly, �nding information. They are not built to spread

information to all participants, as transactions in Bitcoin. Instead, they are built to locate in-

formation in a distributed fashion. Locating of information is accomplished through search

queries, implemented by �ooding techniques or random walks. Therefore, most measure-

ments of classical peer-to-peer networks focus on hop count and search depth of �ooding

queries instead of dissemination latency [68, 109]. Others, such as Saroiu et al. [103], focused

on peer properties. They only measure pairwise roundtrip latencies between a measurement

station and each peer, which are not indicative of in-network latencies over multiple hops

and many paths.

Butnaru et al. [30] and Almeida et al. [16] proposed testing and benchmarking frame-

works for peer-to-peer networks. These frameworks actively create queries to the network

and measure response times. As some of the classical networks, e. g. Gnutella, implement

search queries by �ooding the network, measurements of the response time for queries is

collected by these frameworks. Query response times correlate to dissemination times for

rare lookups, but it is imprecise and not considered in these publications.

Active probes are not suitable for the use case of monitoring Bitcoin transaction laten-

cies, as valid transactions can create high cost per probe. They also would require large

amounts of connections, similar to the fully passive approaches used by third parties in Bit-

coin.

80 CHAPTER 10. BITCOIN MONITORING

Bitcoin Monitoring
The Bitcoin network has been monitored for di�erent goals. Various research and private

projects [21, 22, 67, 81, 85] measure and discuss network properties of Bitcoin. While they ac-

tively build connections to participants, they measure the desired traits in a fully passive way:

the monitoring software crawls the network for possible clients using the gossip protocol of

the network. Then it connects to all found addresses and collects various statistics provided

through the network protocol, including user agent, protocol version numbers and more.

The software keeps the connection open and logs all received messages with their respective

timestamps. This approach allows them to perform accurate measurements throughout the

network. As they track actual tra�c instead of probe and control messages, the results are

reliable representations of the actual behaviour of nodes.

We apply this approach in Section 10.4 to collect comparable datasets. We deviate from

this for our live monitoring by an abstraction of the desired metric, i.e., latency, and severely

reducing the required connections for reliable results.

10.2 Background

In this section we discuss the special properties of the Bitcoin network.

Bitcoin Network
The underlying network of Bitcoin and, in general, of permission-less blockchains is an un-

structured peer-to-peer network. The reference implementation of a client requires a partic-

ipant to create at least eight connections. Blocks and transactions are broadcast throughout

the network [39] by forwarding them through all existing connections. Connected nodes in

turn forward to their neighbors.

In principle, this is a �ood-and-prune broadcast: New transactions and blocks are ad-

vertised through an inventory message. An inventory message contains identi�ers for these

new transactions and blocks. A client can then request the actual block or transaction, with

a so-called getdata message.

To hide the topology of Bitcoin and hide the originator of a block or transaction, the

reference implementation does not instantly propagate new information. The Bitcoin-core

software creates exponentially distributed values, which are used as waiting times until the

next inventory message is sent.
2

This results in a Poisson point process with an average rate

dependent on the expected value of the exponential distribution.

To calculate the waiting times, with an expected average delay of ams and a minimum

of 0.5, Bitcoin uses the formula:

ln(1− rand(0, 248)

248
)(−106)a+ 0.5.

The recent version 0.20.0 uses a value resulting in an average of 5 seconds as default.

To prevent unacceptable long waiting times, Bitcoin caps the generated values at 7 times the

average, i.e., 35 seconds. According to the sources, the privacy consideration of outbound

connections are di�erent from inbound connections and outbound connections have there-

fore half the delay.

2
Cf. net_processing.cpp:4140 and net.cpp:2852 of the Bitcoin sources on GitHub, on commit

ea595d39f7e782f53cd9403260c6c1d759d4a61a.

https://github.com/bitcoin/bitcoin/blob/ea595d39f7e782f53cd9403260c6c1d759d4a61a/src/net_processing.cpp#L4140
https://github.com/bitcoin/bitcoin/blob/ea595d39f7e782f53cd9403260c6c1d759d4a61a/src/net.cpp#L2852
https://github.com/bitcoin/bitcoin

10.2. BACKGROUND 81

There are alternative implementations of Bitcoin
3

which do not have to follow this im-

plementation. Further, there are proposals for di�erent privacy approaches[5, 47] which are

not implemented yet and are therefore not considered during this paper. If they were to be

implemented, the strategies of this paper would need adaption and reevaluation.

Time Measurements in Bitcoin

Given some source node s and some target node t and a measurement nodem connected to

both. The measurement node receives timestamps Ts, Tt by node s and t. The di�erence

Tt − Ts =: Ms,t is a measurement of some property of the network connecting these two

nodes.

First, let us denote the latency of n successive connections as the term `(n)). Secondly,

the random variable modeling the slowdown of the connection between nodes i, j shall be

namedXi,j .Ms,t is then the minimum time taken through the network from s to t through

all possible paths between them. Considering the measuring connection slowdown and la-

tency, the result is:

Ms,t = min(paths,t) +Xt,m −Xs,m + ε(2, `).

Let pathn be a possible path of length n between nodes. Further, X and Xk denote

the exponentially distributed random variables between two nodes within the Bitcoin net-

work, without the addition of 0.5. Xk is either Exponentially distributed with Exp(λ) or

Exp(λ2).

path1 =
1

2
+X + `(1)

pathn =

n∑
k=1

(
1

2
+Xk + `(1)

)
=
n

2
+

n∑
k=1

Xk + `(n)

=
n

2
+
n−m∑
k=1

Xk︸︷︷︸
∼Exp(λ)

+
m∑
k=1

Xk︸︷︷︸
∼Exp(λ2)

+`(n)

=
n

2
+

n−m∑
k=1

Xk︸ ︷︷ ︸
∼Erlang(n−m,λ)

+

m∑
k=1

Xk︸ ︷︷ ︸
∼Erlang(m,λ2)

+`(n)

So a measurement Ms,t is a sum of two Erlang, or Gamma, distributions, with some

noise linear in the number of participants. Further simpli�cations of the description of a

single path will complicate the notation, as the sum of two Erlang distributions with di�erent

scale has no named or well-researched form. Therefore, there is no well-understood model of

a minimum of such a sum either. Lastly, with an expected value of 5 seconds, the slowdowns

and the
n
2 term dominate all usual models for latencies of connections and therefore `(n+2).

Given these circumstances, we are interested in the expected time required to reach a

given fraction of the network.

3
Cf. Bitnodes [123] list of user agents.

82 CHAPTER 10. BITCOIN MONITORING

10.3 Unobtrusive Live Monitoring
We introduce a tool

4
to monitor expected transaction dissemination times in the Bitcoin

network. The tool requires only eight connections to produce reliable estimates of the given

network behavior.

Functionality
Our tool produces an estimate of parameters µ and σ for a lognormal distribution. This

distribution represents the current dissemination latencies for transactions in the network

and can be used to compute the time required to reach a desired fraction of the network. A

discussion on the chosen lognormal distribution and other possible models can be found in

Section 10.5.

Our tool uses initial values for µ and σ as a Bayesian prior and a default of 8 connec-

tions. However, these values can be con�gured by the user. Estimates are generated based on

transactions: Data points are collected for each transaction. In principle, there will be one

measurement per transaction and connection, showing when a transaction was broadcast by

a certain connected neighbor. The monitoring will ignore any data points above the given

connection number, due to the mechanism used to adapt the estimations (cf. Section 10.6).

Technically, the tool consumes text-based input from the standard input. Each line rep-

resents one measurement: A timestamp, a node identi�er and a transaction identi�er. Both

identi�ers are SHA-256 encoded hashes, but they are treated as arbitrary strings. An example

input is given in Listing 10.1.

Listing 10.1: Example of a single input line for the monitoring tool.

1 5 4 7 7 7 9 4 7 3 4 6 8 ,

6 c f 1 1 0 0 a a c c e c 7 5 d a 2 3 9 9 5 5 1 2 f c 7 c 7 a 5 b 6 e 2 5 2 2 4 f 5 9 0 3 a f 0 1 1 e 7 8 6 9 1 c 0 3 d 0 4 5 5 ,

a 7 3 5 7 8 8 2 0 a 4 1 a a 6 1 8 0 6 2 1 b c d 9 0 a f 1 9 9 7 c 8 8 7 9 4 b 3 3 d 8 d b 2 f 0 0 4 e e 3 7 c 3 e 0 9 b 1 0 e c

Interpretation Output
The estimates for lognormal parameters by the monitoring can be used to calculate interest-

ing properties of the transaction dissemination. The cumulative probability of the distribu-

tion CDF(t), therefore, represents the fraction of the network that was likely reached by a

given broadcast before a given time t.
Given µ = 8.5 and σ = 1 as a result, the time to reach 75% of the network can be

determined as the 75th percentile of the distribution. For the given values, this would be

reached at t ≈ 9500ms or 9.5 seconds.

Constraints
A client or library needs to be modi�ed to produce logs in the required format for our tool.

One such modi�cation is used in Section 10.4 using bitcoinj. This library is freely available,

and necessary modi�cations are provided in our code repository. Our modi�ed version does

not participate in further distributing received transactions to produce quicker and more

accurate results.

As this behavior can be detected and may be suspicious to other participants, a modi�ed

client or library could select its measurement times and otherwise behave normally. We rec-

ommend relying on the behavior of the exponential distribution in Bitcoin dissemination,

4
Available online at https://github.com/vs-uulm/btcmon

https://github.com/vs-uulm/btcmon

10.4. DATA COLLECTION 83

and measure transactions during long pauses created by high values drawn from the distri-

bution. Measurements of transactions produced by the client itself can be used all the time,

by sending it to only a single neighbor.

The tool is tuned on data collected from the Bitcoin network. If it is used on a di�erent

network, the assumptions and modeling, e.g., if the lognormal distribution is applicable,

need to be revisited. These assumptions and modeling are described in the following sections.

10.4 Data Collection

In a preliminary step, we collected data on the amount and dissemination of transactions

in the Bitcoin network [8]. This data is required to model the behavior of interest (cf. Sec-

tion 10.5), i.e., the transaction dissemination latencies, and to evaluate the newly developed

estimation tool (cf. Section 10.7). Note that recreation of this step is not necessary to run the

resulting software, but only preparatory to create and validate models.

Related Work
Several projects have measured network e�ects of Bitcoin. We do not consider work that

observed the Bitcoin network to deanonymize clients participating in the network [21, 22,

67]. While they are monitoring the network, their results have a di�erent goal.

Bitnodes provides public live data about the Bitcoin network through an application

programming interface (API) and web interface. Bitnodes uses the discovery mechanism of

the Bitcoin peer-to-peer network to �nd new peers and connects to them. Information pro-

vided by Bitnodes includes version numbers of clients and protocols used, nodes distribution

over countries, node counts and more. According to the website, the servers connect from a

German data-center.

Coinscope [81] and Neudecker et al. [85] analyzed and measured the Bitcoin network to

infer its topology. Coinscope is available as standalone modular software and provides large

scale monitoring capacity. The software attempts to connect to any reachable node in the

Bitcoin network, similar to Bitnodes. However, the topology inference techniques rely on

outdated behavior of the Bitcoin core client.

The DSN research group of the Karlsruher Institute of Technology produces similar live

monitoring information
5

as the one from Bitnodes. The group provides information includ-

ing churn, versions of protocols and clients, node counts, propagation times and more. The

information is provided as graphs and tab separated raw datasets. The nodes used to collect

this information are located in Germany, and as noted by them, results may vary depending

on location.

To validate the data collected by di�erent groups and analyze it further, we collected and

provide our own data set. These datasets were taken at worldwide locations and at di�erent

but similar points in time.

Collecting Methodology

To connect to the network, we modi�ed the library bitcoinj
6

in version 0.14.7 to add logging

capabilities, without modifying any core behavior. Our modi�cations on bitcoinj-core are:

5https://dsn.tm.kit.edu/bitcoin/
6https://github.com/bitcoinj/bitcoinj/releases/tag/v0.14.7

https://dsn.tm.kit.edu/bitcoin/
https://github.com/bitcoinj/bitcoinj/releases/tag/v0.14.7

84 CHAPTER 10. BITCOIN MONITORING

a. Generation of a runtime key as a hash of random bytes, to apply a keyed hash to the

identities of network participants.

b. Creation of a logging �le.

c. For new inventory messages of transactions, the library logs information as a comma-

separated line.

The information logged is structured in the following way:

1. Current timestamp of the java virtual machine (JVM) in milliseconds,

2. a keyed hash of the sender identity,

3. the hash of the transaction.

The generation of the runtime key (a.) and keying of sender identities (2.) is added to provide

privacy to the participants of the network so that the data can be published. The anonymiza-

tion of network participants is done during data collection. No person had access to personal

information.

With this modi�ed library, we implemented an application that uses a connection limit

of 5000 and does not broadcast received transactions, as to not in�uence the behavior in-

tended to measure. This application was run on the local university servers, as well as on

Microsoft Azure virtual computers in three regions: Eastern Unites States, South-East Asia

and Southern Great Britain. The collection was run for about ten hours each and was rerun

on the same virtual machines on multiple dates.

Reproduction

The modi�cations for bitcoinj and the application code are available on GitHub
7
. Further,

we provide a precompiled version of the modi�ed library for ease of reproduction. The col-

lection should be reproducible as long as the network will accept the version of the protocol

used by the library.

To collect data using these modi�cations, download the respective �les and switch to the

collection/application sub-directory. Start data collection within a docker container

using the commands of Listing 10.2, which are also documented in the repository.

Listing 10.2: Example of a single input line for the monitoring tool.

d o c k e r r u n − i t −−rm −v $ (PWD) : / u s r / s r c / b t c c o l \

−w / u s r / s r c / b t c c o l −−rm o p e n j d k : 8 / b i n / b a s h

j a v a c −cp . / b i t c o i n j −c o r e −0 . 1 4 . 7 − b u n d l e d . j a r . / r e s e a r c h / * . j a v a

j a v a −cp " . : . / b i t c o i n j −c o r e −0 . 1 4 . 7 − b u n d l e d . j a r " r e s e a r c h / Main

Collected data will be written to a �le of the form: "crawler-dd.mm.yyyy hh.mm.ss.csv"

where date and time shortages are replaced by the current date and time. The participation

in the network in this form is not prohibited by any terms of use.

7https://github.com/vs-uulm/CoinView, collection sub-folder

https://github.com/vs-uulm/CoinView

10.5. MODELING 85

Info
We collected nine datasets over multiple dates and locations

8
[8], each between 200–670 mil-

lion individual points of data. Collections from Microsoft Azure provide much fewer data

points, as the virtual machines could not create as many connections as the local university

server. A description of all datasets can be found in Table 10.1. All collected datasets are avail-

able online
9

as compressed archives.

Server position Nr. Date Data points Note

Ulm, Germany 1 2019-01-17 570 million

Azure US East 1

 207 million

Azure South-East Asia 1 2019-01-24 207 million

Azure Great Britain South 1 205 million

Ulm, Germany 2 2019-02-01 202 million

Ulm, Germany 3


669 million

Azure US East 2

2019-02-06

204 million Same

Azure South-East Asia 2 203 million identity

Azure Great Britain South 2 204 million key

Table 10.1: All collected datasets of the Bitcoin network.

10.5 Modeling
To reduce the number of connections needed, we abstract from the collected data to a statis-

tical model. The model represents the frequencies of measured dissemination latencies. This

allows us to compute values of interest, such as expected time to reach 90% of the network.

Methodology
First, to determine the dissemination time for each transaction, we split the dataset by trans-

action. To simplify the process, assume that the �rst logged occurrence of a transaction was

produced by the originator of the transaction. This assumption is reasonable on average, as

the collected data is from a large fraction of the network: Either the originator or a node very

close to the originator is present in the data. As a consequence of this assumption, the data

is normalized for each transaction by subtracting the timestamp of the assumed originator,

i.e., the �rst entry for the transaction in the log.

The resulting time series for each transaction was then analyzed for �tting distributions

by visual analysis. SciPy [62] �ts reasonable distributions and produces a visual representa-

tion of the data and created �ts.

Other Tested Models
We explored several possible distributions before establishing the lognormal distribution as

the most �tting model. The tested distributions include a power-law dependency, an expo-

8
https://doi.org/10.5281/zenodo.2547396

9
DOI 10.5281/zenodo.2547396

doi.org/10.5281/zenodo.2547396

86 CHAPTER 10. BITCOIN MONITORING

nential, gamma or generalized Pareto distribution. Those distributions are suitable due to

their usage in network modeling and relationships to the Poisson distribution created by the

privacy mechanism of Bitcoin.

A power law might be applicable for later percentiles of the datasets. Figure 10.2 shows

one evaluation of a possible power law. A linear segment at the end can imply a power-law

dependency. Some of the datasets show a stronger linear end, while most show less of a linear

end, implying a power law is not a suitable description of the data.

Figure 10.2: Density of the data of the February Southern Great Britain dataset in

logarithmic scale, a power law dependency should show as a linear dependency in the later

part of the visualization. [7]

The gamma and exponential distributions are suitable due to their relation to network

modeling and the Bitcoin protocol. Both, and their similar related distributions, do not seem

to be a good �t for most of the data. Figure 10.3 shows an example in the form of probability

density functions.

Lastly, the generalized Pareto distribution was chosen due to their competition with the

lognormal distribution. Similar to the description in [88], we found the generalized Pareto

distribution to describe the extremities better than the lognormal distribution. In contrast,

the lognormal distribution is a better �t to describe the main part of the data. If the interest

lies more on the tail of the distribution, the generalized Pareto �t will give more accurate

results. The generalized Pareto is also included in Figure 10.3, showing a similar �t as the

lognormal distribution.

Lognormal Model
While all analyzed models produced some outliers, the lognormal distribution described a

huge chunk of the data well. Figure 10.4 and Figure 10.5 provide normal probability plots of

10.6. LIVE ADAPTION OF PARAMETER ESTIMATES 87

Figure 10.3: Evaluations of di�erent distributions for the February Southern Great Britain

dataset. Compares probability density functions and the histogram. [7]

the (base 10) logarithm of several datasets. A normal probability plot shows a linear depen-

dency for normally distributed data, so it should show a linear dependency of the logarithm

of the data, for a lognormal distribution. Both, and in general all generated normal probabil-

ity plots, show a strong deviation of a linear trend in the �rst and last percentiles. The 95th

to 99th percentiles show a medium deviation from the linear trend.

Figure 10.4 shows datasets collected at the same time. As suggested by the DSN Bitcoin

monitoring [85], results vary by location, but the variation is small for most parts of the data.

Figure 10.5 shows datasets produced from the same place at di�erent times. Together

with the description in Section 10.2 this strengthens the belief that the model is stable over

time.

One of the nine datasets, the Germany 1 dataset, shows more outliers. These outliers

are better explained by a mixed Gaussian distribution over the logarithm of the data. We

did not further explore this to reduce the risk of over�tting and due to the lognormal model

providing good results of most transactions within this dataset.

10.6 Live Adaption of Parameter Estimates

The monitoring should be live, which means it should update its output over time to re�ect

the current state of the network. Further, the monitoring should not depend on thousands

of connections, nor on the collection of huge amounts of data before processing. To solve

these problems, we �rst evaluate schemes to estimate the parameters of a lognormal model

containing an unknown shift. A simulation of all approaches, implemented based on the

C++ standard library lognormal random distribution, helps to evaluate the quality of results.

Lastly, to improve simulation results, a noise reduction and error compensation scheme is

88 CHAPTER 10. BITCOIN MONITORING

Figure 10.4: Lognormal distribution plot of data collected from di�erent Microsoft Azure

zones on the 6th of February. Data is reasonably lognormal distributed if it is linear,

indicated by a linear �t for the data collected from Great Britain. [7]

applied.

Parameter Inference

As only a low number of connections is desired, we can no longer assume the originator of

a transaction is captured in the data. The result is a three-parameter lognormal distribution,

with an unknown parameterγ, which represents the true origination time of the transaction.

The data points of a given transaction are considered a measurement of this unknown γ
shifted distribution.

We apply an analytical method based on methods of Iwase and Kanefuji [57] as well as a

sampling-based method to deduce the three parameters. Note that the variance and skewness

of the measurementm = {m1, . . . ,mn} are calculated as:

skew(m) =

n∑
i=1

(mi −mean(m))3

n− 1
,

var(m) =

n∑
i=1

(mi −mean(m))2

n
.

This also allows us to calculate σ directly.

The analytical method, using the moments skewness and variance result in the following

10.6. LIVE ADAPTION OF PARAMETER ESTIMATES 89

Figure 10.5: Lognormal distribution plot of data collected from the Southern Great Britain

Microsoft Azure zone on di�erent dates. Data is reasonably lognormal distributed if it is

linear, indicated by the same �t as in Figure 10.4. [7]

(with c = skew(m)):

t =

(
2 + c2 +

√
4 · c2 + c4

2

) 1
3

σ =

∣∣∣∣∣
√
log

t+ 1

t− 1

∣∣∣∣∣
µ =

log(var(m)
exp(σ2)−1)− σ

2

2

γ = mean(m)− exp(µ+ (
σ2

2
))

The sampling-based approach avoids directly calculating γ, as only the parametersµ and

σ are of interest. Even further, given a previous estimate, only the di�erence of the estimated

and unknown µ are of interest, which can be calculated using Algorithm 14.

We simulated both approaches using a hidden lognormal distribution to generate mea-

surements for the transactions. This can be considered an ideal environment for the algo-

rithm, as the samples obey the distribution without systematic outliers. During the simula-

tion, we noticed both presented approaches produce an error dependent on the parameters

of the hidden distribution, and there is a signi�cant amount of noise, due to the low amount

of samples used. After some warmup steps, we compared the absolute error as well as the vari-

ance of the error. The sampling-based approach produced a mean absolute error of≈ 0.13

90 CHAPTER 10. BITCOIN MONITORING

Algorithm 14 Algorithm to compute the di�erence of an estimated µ value and a measure-

ment, without regard for a possible γ shift of the measurement.

Input: List of measured timestamps m, estimated distribution e, number of connections

c, number of rounds r
Output: Di�erence of estimated and unknown µ
m← {mi −min(m) : i ∈ {1 . . . c}}
means← ∅
for 1 to r do
s←Draw c samples from e
s← {si −min(s) : i ∈ {1 . . . c}}
means← means∪{mean(s)}

end for
return mean(means)−mean(m)

with a variance of ≈ 0.02. The formula-based approach produced a mean absolute error

of≈ 17.65 with a variance of≈ 0.11. We focused on the sampling-based approach, as the

error and variance of the error is substantially lower.

Bayesian Approach
To compensate for the noise of a small number of samples, we apply a Bayesian approach

inspired by Kalman �lters [119]. Conceptually, the estimates are improved with each mea-

surement, based on the di�erence between the measurement and the estimate.

Our a priori lognormal estimation is denoted by µe, σe. Let m be a measurement of a

transaction with eight participants, then the di�erences of measured and estimated lognor-

mal parameters are:

dµ = Algorithm14(m, lnN(µe, σe), 10, 100),

dσ =
√

var(m)− σe.

Given this di�erence, the estimates are updated based on a fraction of the di�erence, as

there are huge errors in measurements, due to the low number of connections. The update

process is rather simple:

µe+1 = µe +
dµ
c1
,

σe+1 = σe +
dσ
c2
.

For �rst evaluations c1 = 20 and c2 = 2000 were chosen. Further analysis of the error

could improve the speed of convergence, but su�ciently converged values forµwere reached

after the expected 25–30 steps.

Using this adaption mechanism, we detected an additional error between estimations

and measurements, even in an ideal-world simulation, using lognormal distributions instead

of datasets approximating lognormal distributions.

Error Compensation
To zero in on the error, we created further simulation experiments. The experiment per-

formed the Bayesian adaption using the sampling-based di�erence algorithm in Algorithm 14.

10.7. EVALUATION 91

We restricted the experiment to the modi�cation of µ, i.e., the estimated σ was �xed to the

σ of the hidden distribution. This setup allows us to evaluate the convergence of µ via the

adaption, as more and more measurements are captured.

The resulting error is shown in Figure 10.6 dependent on theµ andσ values of the hidden

distribution. The dependence on µ is negligible, while the dependence on σ is super linear.

Figure 10.6: Heat map of the distance measured between a hidden distribution and our

adapted estimates in a simulation. The x axis shows the dependence of the distance to the µ
parameter, while the y axis shows the dependence on the σ parameter. The dependence on

µ is negligible compared to σ. [7]

Restricting the analysis to one dimension, i.e. σ, a simple quadratic �t to the data pro-

vides further insights. The results are shown in Figure 10.7. While this simple error correc-

tion mechanism produced good results, we recommend a di�erently �tted error correction,

should the system be applied to networks with huge deviations, outside the highlighted area

in the �gure.

The �t produced the following error correction function:

error(σ) = −0.207898 · σ2 + 0.083586 · σ − 0.032573.

As a result, we added the error correction to the return statement of Algorithm 14.

10.7 Evaluation
This section focuses on the evaluation of the full scheme of monitoring Bitcoin.

Methodology
We use the datasets collected in Section 10.4 to evaluate the estimations provided by our tool.

To reduce evaluation load and remove connection warmup artefacts, we focused on the last

1 million lines of each log for most log. We used our largest logs for a long term evaluation by

only removing the �rst million lines.

We split each log prepared in this way by participant, i.e., each part contains all log entries

received from one network participant. We create one thousand new logs by selecting eight

92 CHAPTER 10. BITCOIN MONITORING

Figure 10.7: Simulation results to show the deviation between a hidden distribution and our

adapted estimates dependent on σ, similar to Figure 10.6, as well as a quadratic �t to correct

for the deviation and the di�erence between the �t and data, i.e., the corrected deviation. [7]

participants at random and merging the logs in chronological order. Each new log represents

a log of a virtual node, having connections to only the selected participants.

We ran the monitoring tool on each new log, collecting all estimates over time. As the

estimation tool uses initial parameters which require some time to converge, we prepared al-

ternate versions of the results, where the �rst 30 steps, the warmup phase, has been removed.

This was important to have a realistic estimate on the deviation of the results, as some logs

might start much later into the original monitoring time, and create a bigger spread by log-

ging values close to the initial values.

The results of all runs were then aggregated into a single result log for each original

dataset. The aggregation creates bins, by time, to collect data. We then calculate the aver-

age and standard deviation of all collected data points in each bin.

Per dataset, we calculated the ground truth by splitting the logs by transaction, similar to

the method in Section 10.5. Each transaction was then normalized and used to �t a lognormal

distribution using SciPy. The �tted parameters were stored with the timestamp of the last

contributing log entry, to replicate the process of assigning a time from the estimation. For

the ground truth, we did not apply any averaging or further aggregation.

All software used for the evaluation is available in our code repositories
10

.

Results

Figure 10.8 shows the results of the evaluation of the Great Britain 2 dataset, including warmup

steps for the estimation of µ. The adaption of µ shows a fairly large spread, which can be ex-

plained by the original data: The dissemination of transactions is inherently noisy, but the

estimates capture the bulk of the data.

Using the estimated parameters µ ≈ 8.5 and σ ≈ 1.1 to estimate network behavior

leads to the following latency estimates: The time to reach 50% of all network participants

is approximately e8.5 ≈ 5000ms, while reaching 90% would take≈ 20100ms.

10https://github.com/vs-uulm/CoinView and https://github.com/vs-uulm/btcmon

https://github.com/vs-uulm/CoinView
https://github.com/vs-uulm/btcmon

10.7. EVALUATION 93

Figure 10.8: Evaluation of the µ parameter estimation using the Great Britain 2 dataset. The

estimates are based on eight randomly selected connections, while the SciPy estimation had

access to the full data. [7]

Figure 10.9: Evaluation of the µ parameter estimation using the Germany 3 dataset. The

estimates are based on eight randomly selected connections, while the SciPy estimation had

access to the full data. [7]

The long term evaluation using the Germany 3 dataset is shown in Figure 10.9 for µ and

Figure 10.10 for σ. The estimation shows an underestimation of the real-world data for µ
but can capture strong deviations as in the highlighted area. Sparse, long-lasting deviations

cannot be detected, though. This is expected behavior, as the estimate attempts to capture

overall network performance.

The estimation for σ overestimates the overall network behavior during this long term

test. The reason for this seems to be the con�ict of estimation of single transactions versus

94 CHAPTER 10. BITCOIN MONITORING

the overall network behavior. The results are su�ciently accurate to use for computations,

though. The highlighted area relates to the highlight in theµ adaption, creating a huge spread

in the overall data, which can not be captured well by individual transactions.

Overall, the evaluation shows results su�cient for computation of dissemination times

in the network. Unfortunately, the real-world data is severely noisy, but the µ estimates cap-

ture the bulk of the data well.

Figure 10.10: Evaluation of the σ parameter estimation using the Germany 3 dataset. The

estimates are based on eight randomly selected connections, while the SciPy estimation had

access to the full data. [7]

10.8 Conclusion
In this chapter, we showed that overall dissemination times of transactions in the Bitcoin net-

work can be estimated using the minimum number of connections required by the Bitcoin

reference client, i.e., eight connections. Low latency blockchain applications, such as ATMs

and �le storage applications, pro�t from such monitoring capabilities for an improved user

experience and estimation of double-spend risk.

The monitoring solution is realized by modeling the dissemination times using a lognor-

mal distribution. Such a distribution describes 98% of the collected transaction data well.

We provide a proof-of-concept implementation
11

of our monitoring as well as all collected

datasets
12

and methodology tools
13

.

The noise created by using a very small number of connections is reduced by a Bayesian

scheme to adapt the estimates over several measurements. We also provide a mechanism

to determine the di�erence between the measurement and estimate, circumventing the un-

known shift of the real distribution. While the concrete modeling and implementation rely

on e�ects present in Bitcoin, variants are possible for similar networks, and the methodology

can be applied to di�erent distributions and models.

The results of the provided tool show good adaption to inherently noisy real-world data

independent of geographic location and stable over time.

11https://github.com/vs-uulm/btcmon
12

DOI 10.5281/zenodo.2547396

13https://github.com/vs-uulm/CoinView

https://github.com/vs-uulm/btcmon
doi.org/10.5281/zenodo.2547396
https://github.com/vs-uulm/CoinView

Chapter 11

Threshold Cryptography for k-
Anonymous Broadcasts

This chapter is based on a paper accepted, but not yet published, at DAIS1 [2].

[2] D. Mödinger, J. Dispan, and F. J. Hauck. “Shared-Dining: Broadcasting Secret Shares

using Dining-Cryptographer Groups”. In: Accepted at 21st International Conference
on Distributed Applications and Interoperable Systems (DAIS). 2021.

In the background chapter we introduced various building blocks and protocols to dissem-

inate messages in a network. Chaum’s dining-cryptographers groups [32] provide strong

guarantees and have been used by various state-of-the-art protocols such as Dissent [36, 122]

and the k-anonymous message transmission protocol [12].

Although DC networks provided very strong privacy, to use them e�ciently for broad-

cast communication requires additional protocols layered on top of the DC network, e.g., a

�ood-and-prune broadcast, as used in 3P3. This creates additional risks, as non-cooperating

participants in the layered protocol might force the true originator to step up and jeopardize

their anonymity. Ideally, a system incentivizes nodes to participate instead of only punishing

misbehaving nodes.

In this chapter, we propose a system combining dining-cryptographers groups and (n, k)-

Shamir’s secret sharing. Our system prevents identi�cation of the originator in the presence

of up to k − 1 attackers in the DC group, for a given security parameter k < n with a DC

group size of n. Broadcasting the shares requires at least k participants, leading to enforced

k-anonymity during the broadcast. This chapter is accompanied by a proof-of-concept im-

plementation and it’s evaluation.

This chapter is structured in the following way: In Section 11.1, we introduce relevant no-

tation and Shamir’s secret sharing technique. We propose our k-resistant solution to broad-

cast messages using a DC-protocol and Shamir’s secret sharing in Section 11.2. We provide

a proof of the security and privacy of our scheme in Section 11.3, while an evaluation of the

performance of our scheme can be found in Section 11.4. Lastly, in Section 11.5, we discuss

possible applications of our scheme.

1
DAIS 2021 - 21st International Conference on Distributed Applications and Interoperable Systems

95

96 CHAPTER 11. THESHOLD CRYPTOGRAPHY

11.1 Background

In this section, we detail the speci�c background of this chapter. This includes Shamir’s

secret sharing technique, as well as polynomial properties and goals of network participants.

Shamir’s Secret Sharing
Shamir’s secret sharing [99] splits a message inton shares so thatkwith 1 ≤ k ≤ n shares are

required to reconstruct the original message. This is often called a (n, k) threshold scheme.

Any polynomial f =
∑k−1
i=0 aix

i, ak−1 6= 0 of degree k− 1 is unambiguously de�ned

by any k points (xi, f(xi)) and can be reconstructed from them [50]. Given n pairwise

distinct points of f , we can denote the set as:

{(x1, f(x1)), (x2, f(x2)), . . . , (xn, f(xn)) : ∀i 6= j, xi 6= xj}.

The original polynomial can be recovered from any subset of points of size k using La-

grange interpolation. The recovered polynomial is independent of the chosen points [50]

and is computed by:

f(x) =

k∑
i=1

f(xi)Li(x),

Li(x) =
k∏

j=1,j 6=i

x− xj
xi − xj

.

These approaches work over the reals as well as over �elds Zp, making all operations over

integers modulo p. For security reasons, a suitably large prime p is required, which depends

on the use case and expected computing power of an attacker.

Given a message m ∈ Zp we now want to construct a polynomial f ∈ Zp[x], the

polynomial space over the given integers. The boundary conditions for f are:

deg(f) = k − 1,

f(0) = m.

A polynomial can be constructed easily by choosing integers r1, . . . , rk−1 ∈ Zp\{0}
randomly and computing

f(x) = m+

k−1∑
i=1

rix
i.

It is easy to see that f(0) = m, as all other coe�cients will be eliminated and it holds

that the degree of f is k − 1. The required n secret shares can then be computed as

si = (i, f(i)), i ∈ {1, . . . , n}.

A Galois �eld GF(2n) of suitable size is used to implement Shamir’s secret sharing e�-

ciently, usually GF(28). A notable property of these �elds is that the addition of elements is

equivalent to bitwise xor of their binary representation.

11.2. SECRET-SHARING DINING-CRYPTOGRAPHERS PROTOCOL 97

Goals of Participants

Our honest peers’ goal is to broadcast a message within the network while maintaining sender

anonymity, i.e., at least k − 1 other nodes should be indistinguishable from them as the

originator, where k depends on the parameters chosen in the system. Honest nodes will

strictly follow the protocol, as their goal is to broadcast messages correctly.

The primary goal of the attacker is to identify the participant sending the message. At-

tackers follow the semi-honest model, i.e., they follow the protocol, with a small modi�-

cation: They are allowed to refuse cooperation in the �ood-and-prune broadcasting phase.

They will combine all knowledge they can acquire throughout the protocol, e.g., all mes-

sages they receive. Attackers cannot manipulate the network, compromise other nodes, and

solve computationally-infeasible problems such as encryption schemes. The privacy section

details additional measures and their applicability with malicious attackers.

11.2 Secret-Sharing Dining-Cryptographers Protocol

Consider a group of size n, where one participant wants to transmit a message. Instead of

transmitting the same messagem to all participants, we splitm inton secrets s1, . . . , sn, one

for each participant, using a (n, k)-Shamir’s secret-sharing technique. Each secret is trans-

mitted simultaneously during a modi�ed dining-cryptographers round, resulting in each par-

ticipant ending up with a single share of the message. After receiving their secret, every par-

ticipant starts a �ood-and-prune broadcast to transmit their share. Once a participant accu-

mulates k shares, they can reconstruct the messagem.The values of k and p required for the

secret-sharing are system parameters, i.e., they are known beforehand and stay the same in

the whole system.

Our protocol consists of three phases, which are shown in Figure 11.1. In the �rst phase,

named Split, a given message m is split into n secret shares. To split the message, we chose

k − 1 random numbers r1, . . . , rk.1. To create a random polynomial f which evaluates as

f(0) = m, we use f(x) = m +
∑k−1
i=1 rix

i. Lastly we compute the secret shares si =
(i, f(i) mod p) for all i ∈ [1, n].

Split (Step 1)

Distribute (Steps 2, 3, 4, 5, 6)

Broadcast and Combine (Step 7, 8)

Figure 11.1: The three phases of the protocol and their corresponding steps explained in

Algorithm 15. A message gets split up into n shares, which are then distributed to group

members via a dining-cryptographers broadcast, one share for each. Any k members can

then cooperate and recover the original message, corresponding to the split phase. [2]

In the following phase (the distribution phase), each of the n participants of the net-

work then receives a unique secret si. Note that the DC protocol as described previously

98 CHAPTER 11. THESHOLD CRYPTOGRAPHY

(cf. Chapter 3) can only be used to make anonymous broadcasts, but cannot send individ-

ual messages to certain participants anonymously. We modify the protocol in such a way

that this becomes possible. The modi�ed DC protocol version is shown in Algorithm 15,

note that a node that does not intend to send anything, still proceeds with mself = 0. The

key modi�cation compared to the original DC protocol as described by Chaum [32] (shown

in Algorithm 2) is that Step 4 no longer makes a broadcast, but transmits individual mes-

sages to other participants. This reduces the privacy guarantees of the dining cryptographers

protocol to the security property of the secret sharing technique, this is further discussed in

section 11.3.

Algorithm 15 Modi�ed DC protocol using a secret sharing scheme to distribute individ-

ual message shares to all participants and broadcasting said shares to reconstruct the original

message. [2]

Input: Messagemself of length `
Environment: GroupGself = {gi : i ∈ {1 . . . k}}, including the executing node gself

1: Splitmself into n partsmself,1, . . . ,mself,n using the secret-sharing scheme

2: Establish random secrets sself,i of length `with each member gi, i 6= self
3: Mself,i = mself,i ⊕

⊕
j=1...n,j 6=self sself,j ∀i ∈ {1 . . . n}

4: SendMself,i to gi ∀i ∈ {1 . . . n} \ {self}
5: ReceiveMi,self from gi ∀i ∈ {1 . . . n} \ {self}
6: mself,out =

⊕
i=1...n,j 6=self Mi,self

7: Broadcastmself,out

8: Reconstructmout after receiving k − 1 other shares

The output of the distributed xor function that participant gh computes is no longer

mout =
⊕

i=1...nmi but rather mh,out =
⊕

i=1...nmi,h. Each member must now

broadcast the message mhout. If at least k participants broadcast their message, every re-

cipient can decode the original message. If k − 2 or fewer participants broadcast the mes-

sage, no one can decode the message. When exactly k − 1 participants broadcast, only non-

broadcasting participants of the group can decode the message, as they possess the last share

required to decrypt the message themselves. Verifying the correctness of the result is omitted

for the simplicity of the presentation. It would require application-level integrity protection,

i.e., there needs to be a way to ensure a message is valid for the application using the protocol.

Correctness
For the protocol’s correctness, we assume all participants execute the DC protocol correctly,

no errors occurred, and everyone used a (n, k)-Shamir’s secret sharing technique. In a �rst

step, we show that participants can reconstruct the sum of all Shamir’s secret sharing points

from the messages received in the DC protocol. From this, we reconstruct the original mes-

sagemi 6= 0 in a second step, given a successful sharing round.

Recovering the Sum of All Shared Points

The i-th participant receives the n− 1 messages

M1,i . . .Mi−1,iMi+1,i . . .Mn,i.

Further, they create the messageMi,i themselves. Each message has the form

11.2. SECRET-SHARING DINING-CRYPTOGRAPHERS PROTOCOL 99

Mh,i = mh,i ⊕
⊕

j∈{1...n}\{h}

sh,j .

Therefore, the combination through xor of all receives messages is

⊕
h∈{1...n}

Mh,i =
⊕

h∈{1...n}

mh,i ⊕
⊕

j∈{1...n}\{h}

sh,j



=

 ⊕
h∈{1...n}

mh,i

⊕


⊕
h∈{1...n}

⊕
j∈{1...n}\{h}

sh,j︸ ︷︷ ︸
=0, as sh,j⊕sj,h=0


=

⊕
h∈{1...n}

mh,i.

As mh,i was created through the Shamir’s secret sharing protocol, they have the form

mh,i = ph(i). Here ph is the polynomial created by participant h to split their message.

The polynomial is created over the Galois �eld GF(28), a �eld with characteristic 2. In �elds

of characteristic 2, xor and addition are equivalent. Therefore, it holds that⊕
h∈{1...n}

mh,i =
⊕

h∈{1...n}

ph(i)
over GF(2q)

=
∑

h∈{1...n}

ph(i).

Reconstruction of the Shared Message

In this second step, we show that receiving k distinct results allows us to reconstruct the

original message input of the protocol. We assume that the �ooding mechanism, or any ap-

propriate sharing protocol, correctly distributed k shares to all participants. Without loss of

generality, we assume a participant received the �rst k messages∑
h∈{1...n}

ph(1), . . . ,
∑

h∈{1...n}

ph(k).

We saw in the section on Lagrange interpolation, that polynomial interpolation is uniquely

possible with k evaluation points p(1), . . . , p(k) for a polynomial p of degree deg(p) =
k − 1.We interpret our received messages as points of a polynomial p∑ :

p∑(i) :=
∑

h∈{1...n}

ph(i).

Polynomial interpolation is unique with the given degree restrictions and polynomial

addition can not increase the degree of the resulting polynomial. It holds, therefore, that

p∑ =
∑

h∈{1...n}

ph.

Evaluation and addition is commutative for polynomials, i.e., (f + g)(x) = f(x) +
g(x). Lastly, assume the messages are encoded at evaluation position s.

100 CHAPTER 11. THESHOLD CRYPTOGRAPHY

p∑(s) =

 ∑
h∈{1...n}

ph

 (s) =

 ∑
h∈{1...n}

ph(s)︸ ︷︷ ︸
=mi


If at most one message mi 6= 0 exists, the reconstruction of the message is successful.

Otherwise, the sum of all non-zero messages is restored.

11.3 Security and Privacy Evaluation
For this evaluation, we assume a group size of n participants using a secure (n, k)-secret

sharing scheme. We restrict ourselves to the group communication, as the �ood-and-prune

broadcast has no interesting privacy or security properties. We will �rst establish the goal of

our privacy analysis and analyze two attacker models, semi-honest participants and outside

observers, regarding this goal.

Goal
LetMi = (Mi,1, . . . ,Mi,n) be the vector of messages created by node i in a system with n
participants, and Setup the creation of groups and distribution of keys and parameters. Let

f be the function combining such a vector into the intended message, i.e., the combination

algorithm of the secret sharing scheme. Within the formalization, we denote the previously

presented Algorithm 15 as Alg15, which is used to create all messages Mi,j . Let the prob-

ability that k − 1 attackers A successfully identify a node ` sending a message be denoted

by

P

f(M`) 6= 0

∣∣∣∣∣∣
pp← Setup(λ, k, f)

Mi :=Mi,j , i, j ∈ {1 . . . n} ← Alg15(pp)
` ∈ {1, k + 1, . . . , n} ← A(pp,Mi,j , j ∈ {2 . . . k})

 .
We call our scheme (n, k − 1) secure if this probability is only negligibly di�erent from

selecting a participant out of the n− k + 1 non attackers at random, i.e.,∣∣∣∣P − 1

n− k + 1

∣∣∣∣ < negl(λ).

Informally, this de�nition is true when k− 1 colluding nodes can not identify the origi-

nator of the message within the set ofn−|attackers| non-colluding nodes. But once k nodes

cooperate, no guarantees are made.

Semi-Honest Model
To show our scheme ful�lls the previous de�nition, let there be k − 1 colluding attackers

present in the group, which follow the semi-honest model. Assume, without loss of gener-

ality as the nodes can be renumbered, that the victim has index 1 and the attackers’ index 2

through k.
These colluding participants can collect k−1messagesMi,j of the formMi,j = mi,j⊕⊕
h∈{1...n} si,h by any participant i and the honest reconstruction of p∑, which provides

the transmitted messagem and the sum of all point evaluations. To identify the originator,

the attackers need to compute any m1,j of the victim or, equivalently, their aggregate key

11.3. SECURITY AND PRIVACY EVALUATION 101

⊕
j s1,j .The original proof of Chaum holds for directly reconstructing

⊕
j s1,j , so we will

focus on m1,j . Note that m1,j = p1(j) is equivalent, where the polynomial p1 has degree

deg(pi) = k − 1 and the form

pi(x) =

k∑
`=1

a`x
`−1.

Given k − 1 messagesM1,2 . . .M1,k+1 and i 6= j we can see that it holds that

M1,i ⊕M1,j =

m1,i ⊕
⊕

h∈{1...n}

s1,h

⊕
m1,j ⊕

⊕
h∈{1...n}

s1,h


= m1,i ⊕m1,j ⊕

 ⊕
h∈{1...n}

s1,h ⊕
⊕

h∈{1...n}

s1,h


= m1,i ⊕m1,j ⊕

⊕
h∈{1...n}

s1,h ⊕ s1,h︸ ︷︷ ︸
=0


= m1,i ⊕m1,j

As xor and addition are equivalent over base �elds of characteristic 2, which we use, and

thatmi,j = pi(j),we can see that

m1,i ⊕m1,j = p1(i) + p1(j).

Note that this only holds for even combinations, i.e., we can not create p1(2)+p1(3)+
p1(4). All combinations with an even number of parts can be constructed as a linear com-

bination of combinations of two parts. Therefore, using this equation, we can create only

k − 2 linearly independent equations

[p1] =


∑k
i=1 2ai2

i−13i−1 = p1(2) + p1(3)
...

...∑k
i=1 2ai(k − 1)i−1ki−1 = p1(k − 1) + p1(k)

The attackers can reconstruct the transmitted message m = p∑(0) by following the

protocol normally. Removing all attacker polynomials p2 . . . pk leaves

p∑ − k∑
j=2

pj = p1 +

n∑
j=k+1

pj =: premains.

Using this and applying the strategy to compute [p1] on all non-colluding participants

allows the attackers to create the following matrix
[p1] [0] · · · [0] S1

[0] [pk+1] [0] Sk+1

...
. . .

...
[0] [0] [pn] Sn

1 . . . 1 1 . . . 1 . . . 1 . . . 1 premains



102 CHAPTER 11. THESHOLD CRYPTOGRAPHY

All entries [pi] represent the previous equation systems with their respective solution

vectors Si = (pi(2) + pi(3), . . . , pi(k − 1) + pi(k)) generated from the messages Mi,j .
Each block [pi] and [0] have k − 2 rows, while the �nal row models premains, where all co-

e�cients are present exactly once. All further derivations of premains would not be linearly

independent equations. There is no further relation between the remaining polynomials

p1, pk+1, . . . , pn, as all are chosen independently at random.

Solving the equations for a single participant leaves us with k − 2 + 1 rows ([pi] and

premains) and k indeterminants a1, . . . , ak and therefore k columns. The full matrix has

(n − k + 1) × (k − 2) + 1 rows and k × (n − k + 1) + 1 columns. According to

the Rouché–Capelli theorem there is a unique solution for a system of equations Ax = b
i� rank(A) = rank(A|b). Therefore, our system of equations leads to ambiguous recon-

struction, as there are in�nitely many solutions. Further, it would break the security assump-

tion of the base secret sharing protocol.

If a message can be veri�ed after decryption, an exhaustive search for solutions is possible.

The underlying �eld size corresponds toλ in our previous de�nition as it determines the cost

for an exhaustive search. Absent any notes identifying correct solutions, all solutions to the

system of equations are equally valid and likely. Therefore, any of the n − k + 1 possible

victims might be the sender with equal probability P [f(M`) 6= 0] = 1
n−k+1 .

Outside Observers

Outside observers cannot determine the origin of a broadcast as long as secure channels are

used, as all participants have to send data of the same size for each transmission. Similar to

classical DC networks, no guarantees can be retained when the channels are no longer secure.

Modern DC Malicious Mitigation

While attackers act semi-honest in the previous evaluation, modern dining-cryptographers

protocols apply various mechanisms to deal with collisions, fairness, and robustness issues of

the protocol [12, 52].

To increase fairness the protocol can apply 2n slots, where every participant may use

at most one slot at a time, which they chose randomly. Participants create commitments

on each secret share they create, to prevent cheating. Each commitment is broadcast to the

whole group. When more than n slots are occupied, a zero-knowledge proof allows every

honest participant to show their innocence. As long as every participant uses at most one

slot, any participant has a fair chance of at least
1
2 to transmit their message.

Lastly, the most problematic case, selective non-participation, can be combated by pre-

emptively sharing all secrets in encrypted form with the group. If any node claims another

refuses to send their messages to them, any other node can take over by forwarding the en-

crypted shares.

These techniques can be applied to our proposed protocol to make it resistant to ma-

licious participants. Slots can be easily introduced by applying the secret splitting per slot,

instead of the full message. Commitments can be created in the same form as by von Ahn

et al. [12]: each slot provides its own commitments. The zero-knowledge proof of fairness

by von Ahn et al. can be easily extended as well: The opening of commitments is combined

with a reconstruction of the secret shares into the actual message. The resulting message has

to be zero.

11.4. PERFORMANCE EVALUATION 103

11.4 Performance Evaluation
This section shows the performance results for our scheme and the methodology used to

acquire those results.

Methodology
We implemented a prototype simulation that can simulate both the original DC protocol

and our modi�ed version. The simulation is available online
2

and written in Java. We use

built-in synchronization utilities to model the communication and synchronization of par-

ticipants. For threshold cryptography, we used the open-source library shamir
3

in version

0.7.0. The Shamir library uses a Galois �eld GF(28) as a base �eld. The library provides two

methods, split and join, of combined complexity ofO(` · (n + k2)), where ` is the length

of the message and n, k are the parameters of Shamir’s secret sharing.

We ran this implementation 10 to 30 times for each combination of parameters. We ag-

gregated the measured throughput and computed the average and standard deviation.

Network latency is simulated, but we set it to 0 to prevent in�uence on the measured

variable when not speci�ed. To mitigate our results’ distortion due to runtime optimization

attempts by the Java virtual machine, we ran a warm-up phase before each test. In this warm-

up phase, 100 runs were performed that are not included in our results.

We compared the modi�ed DC protocol, denoted as Broadcast, to Chaum’s original ver-

sion’s performance, denoted as DC phase in graphs. We investigated several core issues:

• The size ` of the transmitted message,

• the scaling behavior of the protocol, i.e., increasing n,

• the performance impact of variable k values,

• the in�uence of network latency.

For the performance evaluation, we consider a simple collaboration protocol in place of

the broadcast to reduce simulation e�ort. Participants collaborate with at least k − 1 other

members to recover the original message m. Algorithm 16 provides a cooperation scheme

which, when executed correctly by each network member, produces the minimum number

n(k − 1) of transmitted messages.

Algorithm 16 Combine protocol to emulate broadcast, reconstructing the original message

from cooperating with other participants. [2]

Input: Message partmi :=
⊕

jmj,i, number of required message shares k
Environment: GroupGself = {gi : i ∈ {1 . . . n}}, including the executing node gself

1: Sendmi to gj ∀j ∈ {i+ a mod (n+ 1) | a ∈ N, 1 ≤ a ≤ k − 1}
2: Receivemr from gr∀r ∈ {x | ∃a, 1 ≤ a ≤ k − 1 : x+ a mod (n+ 1) = i}
3: return mout from the k − 1 received messages andmi.

We opted not to evaluate a full �ooding approach, as this would shift the focus from

the modi�cations we performed. Additionally, the performance characteristics of �ooding

approaches are well known.

2
See https://github.com/vs-uulm/thc-in-dc-simulation

3https://github.com/codahale/shamir

https://github.com/vs-uulm/thc-in-dc-simulation
https://github.com/codahale/shamir

104 CHAPTER 11. THESHOLD CRYPTOGRAPHY

Message Size `
Both the original DC protocol and our modi�ed protocol transmit a message of the �xed

length ` each round. We want to keep ` as close as possible to the actual length of the infor-

mation we want to send.

Messages longer than ` can be split into multiple messages, increasing overhead and,

therefore, decreasing throughput. If the information is shorter than `, it can be padded with

0-bytes to make it size `, leading to the transmission of more data than necessary, producing

overhead as well.

We show the results of this overhead in Figure 11.2. We varied ` from 32B to 32 kB
with n = 10 and a given real message size of 8 kB. We chose the relevant parameters for this

benchmark with regard to the potential use for our proposed system in the �eld of cryptocur-

rencies. Therefore we picked sizes applicable to groups [5] and transaction sizes, validating

our assumption that the performance is at its peak when ` is roughly equal to the size of the

information to transmit. Results for varying sizes of n (not shown) lead to the same valida-

tion.

102 103 104
0

200

400

600

800

1000

Bytes transmitted per round (`)

T
h

r
o

u
g

h
p

u
t

[
k

B
/
s
]

DC Phase

Broadcast

Figure 11.2: The measured throughput and its standard deviation while increasing ` for

n = 10 and k = 3. The transmitted information has size 8 kB. Performance reaches its

peak when ` is about the size of the transmitted information. [2]

Network Size n
While the message complexity for the core DC protocol is identical in both schemes, a round

of the modi�ed version of the DC protocol needs additional messages in the cooperation

phase. When keeping k constant, the modi�ed version of the protocol requiresO(n) more

transmissions than the original protocol. As we see in Figure 11.3a, this makes a signi�cant

di�erence for a low number of participants. Because both versions of the protocol are of

overall complexityO(n2), the linear performance penalty becomes less of a concern when n
grows larger.

The increased number of sent messages is only one reason for the worse performance of

our system. The time for performing one round of the protocol can be divided into two parts:

time spent communicating and time spent for calculations. Our system requires a larger

amount of computations compared to the classical DC protocol. In addition to performing

the core DC functionality, it also splits and joins the messages to transmit using a secret-

sharing-scheme, resulting in the strong performance di�erence in Figure 11.3a.

11.5. APPLICATIONS 105

Network Delay

5 10 15 20

102

103

Number of participants

T
h

r
o

u
g

h
p

u
t

[
k

B
/
s
] DC Phase

Broadcast

(a) Delay 0 ms

5 10 15 20

100.8

101

101.2

Number of participants

T
h

r
o

u
g

h
p

u
t

[
k

B
/
s
]

DC Phase

Broadcast

(b) Delay 100 ms

Figure 11.3: Measuring throughput in DC protocol runs over networks of various sizes.

Variable n, k = 3, ` = 8kB. [2]

To investigate less optimal environments, we simulated our scheme using a delay of >
0ms. The gap in performance between the original DC protocol and our system is notably

smaller. The results of adding a delay of 100ms are shown in Figure 11.3b respectively, but

simulations with intermediate values show similar results. We chose 100ms as a typical rep-

resentation of internet communication delay, but in real-world scenarios, it can be consider-

ably smaller.

Note that when adding delay, our system only improves relative to the original dining-

cryptographers protocol. The absolute performance of both approaches su�ers under mes-

sage transmission delay. We measured throughput rates of 13.58 kB/s for n = 4 and

9.12 kB/s for n = 10 with a delay of 100ms.

Number of Shares k
Lastly, the value of k is the number of message shares needed to restore a message and signif-

icantly impacts the protocol. This impact is due to participants needing to compute addi-

tional methods and perform additional k− 1 transmissions to receive the shares. Figure 11.4

shows the results of benchmarking our system withn = 10, ` = 8kB andk ∈ {3, . . . , 10}.

As expected, increasing k decreases our system’s performance.

11.5 Applications
As we have seen, our version of a DC protocol typically achieves throughput rates between

10 kB/s and 100 kB/s. A real-world application for our system lies in the anonymous trans-

mission of transaction data for blockchains, e.g., in an environment like the one proposed

in [5]. Such transaction data are typically of size < 1 kB, whereas group sizes are between

n = 4 and n = 10 and transmission delay is around 100ms.

Many blockchain systems produce only a few transactions per second, despite thousands

of nodes participating in the network. Separating these into groups for privacy is unlikely

to lead to any groups that require more than one transaction per second. Therefore, every

system that can achieve speeds of> 1 transactions made per second is suitable for application

106 CHAPTER 11. THESHOLD CRYPTOGRAPHY

4 6 8 10
0

20

40

k
T

h
r
o

u
g

h
p

u
t

[
k

B
/
s
]

Broadcast

Figure 11.4: Measuring network throughput while varying parameter k. The other

parameters are kept constant with n = 10 and ` as well as the size of the transmitted

information as 8 kB. [2]

in a system as the one proposed in [5]. Our system is well-suited for such a task, as it can

e�ciently work with this load.

11.6 Conclusion
In this chapter, we introduced a novel combination of the classical dining-cryptographers

protocol and Shamir’s secret sharing to enforce k-anonymity during a broadcast process. This

problem arises during a broadcast, as nodes that already received the message might refuse

further cooperation. We showed that the protocol is computationally secure in the number

of shares k, maintaining n− |attackers|-anonymity for at most k − 1 attackers.

Our system provides a �rst, unoptimized solution, so further work could improve the sys-

tem’s performance and �exibility. In our simulation, this results in throughput rates between

10 kB/s and 100 kB/s for a full broadcast simulation and over 500 kB/s with reasonable

privacy settings. These performance results show our system is viable for a wide range of ap-

plications, such as blockchain-transaction dissemination in peer-to-peer networks and other

peer-to-peer applications requiring high privacy guarantees.

Chapter 12

Pixy: Privacy-Increasing Group
Creation

This chapter is based on a previous publication at ICNS [3].

[3] D. Mödinger, N. Fröhlich, and F. J. Hauck. “Pixy: A Privacy-Increasing Group Cre-

ation Scheme”. In: 5th International Conference on Network Security (ICNS). 2020.

In previous chapters, we discussed network protocols applying group-based privacy mech-

anisms [5, 12, 32]. The privacy of these protocols is based on the indistinguishability of the

originator of a message from all other group participants, i.e. the anonymity set is the group.

However, if multiple participants of the group collude, they can reduce the e�ective privacy

of this method.

The current state of the art of techniques to detect nodes pretending to be multiple iden-

tities, i.e., Sybil detection, for group based protocols performs said detection in parallel to the

communication protocol. At this point privacy could have been violated already. To prevent

this, testing needs to be done before any privacy requiring group communication takes place.

This creates a novel combination of group-based communication techniques and Sybil de-

tection mechanisms, as the current state of the art relies on problematic assumptions, e.g.,

on already established trust relationships. Those can be easily gained by the attacker through

short preparation times before the attack.

We propose Pixy to tackle these problems. Pixy is a novel group creation scheme focusing

on privacy for the participants. Pixy increases privacy guarantees for group creation, reducing

the required group size for a given desired privacy level. Von Ahn et al. [12] and 3P3 [4] use

groups for privacy and gain performance from reduced group sizes. The scheme provides a

�exible component-based approach and well-suited default mechanisms.

The structure of this chapter is as follows: First, we discuss existing group creation strate-

gies in Section 12.1. Section 12.2 gives an overview of the relevant background such as mech-

anisms we apply and the scenario we operate in. In Section 12.3 we describe Pixy, our group

creation scheme, and provide a �rst evaluation of Pixy in Section 12.4.

12.1 Related Work
The literature does not have any ready-made solution for group formation under Sybil at-

tacks or collaboration, as Sybil attack detection and prevention have to be customized to the

107

108 CHAPTER 12. PIXY

underlying architecture to be e�ective.

There are two noteworthy group creation schemes for privacy or security, which we will

discuss here. The trustworthy group making algorithm [14] groups nodes based on a par-

tially established trust graph between the nodes. The secure group agreement protocol [35]

deals with a group invitation message from which the group members can be determined

and veri�ed.

Trustworthy Group Making Algorithm
In 2011 Aikebaier et al. [14] published a novel approach which builds a group of peers based on

transitive trust. They apply their previous trustworthiness concept [13]: A peer is considered

more trustworthy, the more messages a peer successfully forwards.

Aikebaier et al. develop a broadcast algorithm which relies on the trustworthiness of the

individual peers for a formed group. Group formation is carried out via a previously estab-

lished trust graph and a group initiator peer which calculates the trustworthiness of the other

peers from its point of view. The trustworthiness of a node is either direct trustworthiness

computed as a ratio of several successful interactions to all interactions with such a node, or

as transitive trust based on direct trust multiplied by the trust of the intermediate path. For

multiple paths, the maximum trust value is chosen as the trust value for this participant. If

there have been no previous interactions, direct trust is unde�ned.

To form a group, Aikebaier et al. [14] start with one source peer which invites the neigh-

bor peers with trustworthiness over a speci�c threshold. These neighbor peers then introduce

their neighbor peers with a trust value over this threshold to the source peer. If a group can-

not be formed with the desired threshold, the source peer reduces the threshold and restarts

the group formation.

Trust information, as it is used in this protocol, plays an important role in Pixy. The

protocol by Aikebaier et al. could be used to realize the trust management and initial group

formation of Pixy. Beyond that, Pixy applies testing of desired properties to increase trust in

group participants.

Secure Group Agreement Protocol
The approach by Corman et al. [35] describes another group building mechanism in the con-

text of peer-to-peer video games over the Internet. In this context, a subset of peers in the

network can form a veri�cation group for occurred events of a game. Corman et al. base

their approach on a distributed hash table (DHT) over a peer-to-peer network, which maps

the peers and �les into the key spaces using a hash function, as well as an established public

key infrastructure.

A group initiator computes an invitation message for the group members and sends it to

the peers of the group. Every invited peer answers with an acceptance message. If a response

of a peer does not return, the group peers try to forward the invitation to the missing peer.

If the answer of the absent peer is still missing, the group formation will be aborted.

An invitation message consists of a signature and hashable contents, including a group

id, timestamp, purpose and an incrementing member number. Peers are chosen randomly

based on the random oracle property of the hash value of the content, to prevent precompu-

tation or groups and produce well-randomized group composition. This property of pro-

ducing well-randomized groups allows for a baseline comparison. The protocol can be used

in the absence of trust information but does not provide further privacy assurances beyond

randomness.

12.2. BACKGROUND 109

Applicability
The two group formation protocols serve di�erent purposes in the �eld of peer-to-peer net-

works and are therefore not well applicable to the given problem of increasing privacy. The

one by Corman et al. [35] represents a veri�ed group invitation message, and the other by

Aikebaier et al. [14] is based on already established trust relations between peers and contains

an initiator peer which starts the group formation with the most trustworthy neighbor peers.

In our situation, the veri�ed invitation message could be used to form a group, but would

not help with our problem of Sybil attacks and collaboration. The group formation by Aike-

baier would support the protection of the group forming against unfamiliar nodes, but if one

Sybil peer is in the trust range, it can invite other Sybil nodes and the intrusion would never

be detected. So these approaches are not suitable for our problem.

12.2 Background
In this section, we will discuss the relevant background information. First, we will elaborate

on our assumptions and scenario, setting important boundary conditions for viable mecha-

nisms. Second, we will discuss some possible mechanisms and classi�cations of mechanisms

we will apply in the scheme.

Sybil Prevention and Detection Mechanisms
When an attacker claims to have multiple identities to get an advantage, that’s called a Sybil

attack [41]. Sybil attacks typically occur in applications like online voting and reputation sys-

tems [60, 70]. Peer-to-peer networks with no certi�cation authority are generally vulnerable

to Sybil attacks [41] as well.

Categories of Detection Mechanisms

We provide an overview over typical mechanisms to detect Sybils based on previous survey

articles [18, 60, 70].

• Trusted Certi�cation makes a certi�cation authority prevent Sybils [41].

• Resource Testing assumes limited hardware for participants and little variance in re-

sources. If all participants need to prove the amount of resources they can expend, e.g.,

by a proof of work scheme, a Sybil attacker can only provide a fraction of the resources

compared to a non-Sybil node [27, 71, 106].

• Recurring Cost reduces the complexity of the resource check but repeats it over time.

An attacker, therefore, has to provision the required resources over longer amounts of

time. Renting additional resources is therefore uneconomical [27].

• Incentive-based Detection provides protocol level incentives, e.g., increased trust or

virtual coins, to a node reporting collusion by cryptographic proofs of messages [75].

• Social Graph requires an already established social trust graph, which is evaluated for

connections between the area of honest nodes and dishonest node [37, 125, 126].

Most schemes try to discourage the attacker by increasing the cost of an attack over the

pro�t of the attack. While the Sybil attack cannot be prevented in full, the probability of

110 CHAPTER 12. PIXY

a successful attack can be reduced. The e�ectiveness of Sybil detection or prevention tech-

nique depends on the use of a suitable techniques for the current architecture [60, 70].

We exclude Privilege Attenuation, which is not suited for peer-to-peer networks, Loca-

tion and Position Veri�cation and schemes based on Received Signal Strength Indication,

as they do not work for wired internet connections. Lastly, we also do not consider Ran-

dom Key Pre-Distribution as they require a static, i.e., non-dynamic, setup phase. From the

remaining techniques, we will restrict ourselves to resource testing, as trusted certi�cation

either requires a trusted third party or another form of consensus. We do not consider recur-

ring costs for now, as they could be implemented as a simple extension to our scheme. We

also exclude social graph mechanisms as they require a pre-established trust graph, although

they provide promising enhancements for Pixy in long-running networks.

Resource Testing

Resource testing can be realized for Sybil detection and prevention by well known computa-

tional puzzles [38, 43, 78]. In the literature, there are di�erent designations for such puzzles.

A puzzle is used between a prover and a veri�er. In general, a puzzle consists of three

phases: Generation, solving and veri�cation of the puzzle. Puzzles can be interactive or non-

interactive and have a symmetric or asymmetric workload. The puzzles can further be di-

vided by their application, which resources are used, and implementation of the veri�cation

process [15].

The considered application types are pricing puzzles, delaying puzzles, timing puzzles

and AI hard puzzles, sometimes called CAPTCHAs. Delaying puzzles require a prede�ned

amount of time and are sometimes called timelock puzzles [94] while timing puzzles have no

predetermined time at construction. Pricing puzzles have a known lower-bound on resources

and are used to increase the cost of an otherwise cheap operation [43].

Puzzles can further be separated by resources, most often: CPU, memory, bandwidth,

network latency or ordering and human attention. Applicability depends on the use-case

and setting. There are further properties of puzzles, the most important are the uniqueness

of the challenge, unforgeability of solutions and non-parallelisability of the computation.

For this work, we evaluated several puzzles based on these properties, shown in Table 12.1.

Time-lock Non-parallelisable Memory-bound PoSW Delay

[23, 64, 74, 94] [59, 108] [10, 42] [33, 73] [25, 92, 120]

Resource CPU CPU Memory CPU CPU

Simultaneous + + + + +

Asymmetric + + + + +

Implicit / ± / / /

Unforgeable + + + + +

Unique Puzzle + + + + +

Unique Solution + + + / +

Sequential + ± + + /

Table 12.1: Overview over the characteristics of the interactive puzzles: Time-lock Puzzle,

non-parallelisable puzzle, memory-bound function, proof of sequential work (PoSW) and

delay function. + shows that a puzzle supports the property, while / signals no support. ±
shows that support is non-homogenous over evaluated variants.

12.2. BACKGROUND 111

Abadi et al. Delaying Puzzle

The concept of Abadi et al. [10] for a memory-bound function is based on a tree with depth

k. For now, let k be an integer. The tree is constructed from a random leaf value x0 to

the root value xk. This construction ensures a su�cient size of the tree, around the size of

(k+1)(k+2)/2. The depth k of the tree has to be much smaller than 2n, withn an integer.

The authors suggest that k should ful�ll k < 2n−5. The tree is computed by the function

F : [0, 2n − 1]→ [0, 2n − 1]. F is a random function with no permutation.

The equation xi+1 = F (xi)⊕ iwith the index i ∈ (0, . . . , k−1) calculates the nodes

in the path from the leaf x0 to the root value xk. The calculation of the tree is a chain of

repetitive applications of the function F .

The veri�er has to choose a random leaf value x0 and construct the tree path from x0 to

xk. Over the path from x0 to xk, a checksum is built and sent to the prover with the root

value xk. The veri�er adds the checksum of the path to x0, the prover has to compute x0.

To �nd the desired element, the prover computes the inverse function F−1 of F . The

function F is chosen in such a way, that computing F−1 is less e�cient than a memory

access. So the most e�cient solution is to construct a memory table of size 2n for F and

do reverse lookups. A depth-�rst search computation of the solution requires unpredictable

random access to distributed locations of memory. From that, the prover constructs possible

pre-image chains, which are compared to the given checksum by the veri�er. If a solution is

found, the veri�er just needs to check if the solution matches x0.

CPU-intensive algorithms for this puzzle solution exist, but for a good choice of the func-

tionF and the parametersn and k, these approaches do not bring any advantages. These so-

lutions would need a longer period to solve the puzzle than to use the memory-bound one.

Abadi et al. also give relative values for the parameters. The researchers [10] suppose that

the work f for the function F should be (r/8) 6 f 6 r where r is the work for a memory

read to prevent a fast inversion and computation. The depthk has to be chosen carefully with

the assumptions that k < 2n−5 to exceed cache lines, k >> 4 · (f/r) to force a high work

ratio on the prover, k >
(
2(n/2)+1 ·

√
f/r ·

√
c
)

with c as a cost factor for CPU intensive

solutions to prevent a CPU-intensive search and k >
(
2(n/2)+1 ·

√
1/p ·

√
(f + w)/r

)
so that the table can be built e�ciently.

The integer p represents the number of such combined problems. A problem is con-

sidered as �nding an x0 from xk. The costs of memory reading and writing are considered

equal (r = w). The parameters c, r and w are integers. Abadi et al. [10] also provided

an example for F and tested common cryptographic hash functions. They show that F
can be constructed as a random function generated through a master function by F (x) =
MF (x) ⊕ j = G(t, x). G consists of two pre-distributed random tables of size 2

n
2 and

discards the 16 most- and least signi�cant bits of the multiplication of table entries. The re-

sulting function is F (x) = F (a0|a1)middle-bits(t0[ao] · t1[a1]).
The puzzle can be solved a little bit faster with the help of better hardware, but not as

fast as it with CPU-bound puzzles. For the uniqueness of the puzzle, the function F (x) =
MF (x)⊕ j and x0 has to be varied for every node. [10]

A closer mathematical and practical examination of the concept of Abadi et al. [10] in

the direction of a concrete realisation would exceed the scope of this thesis. Dwork et al. [42]

explored the same approach to Abadi et al., but they suggested a di�erent random function.

For simplicity, we restrict ourselves to the initial approach.

112 CHAPTER 12. PIXY

CAPTCHAs
CAPTCHAs are mechanisms to tell humans and machines apart [111, 112]. As they prevent

automation, they are well suited to prevent automation-based Sybil attacks [66], e.g., by bot-

nets. It is important to note that they can be only applied in contexts where automation is not

an important goal. We argue that privacy is mostly relevant for humans, so having humans

verify the initial step of a privacy-enhancing group formation is acceptable and automation

is not desired.

CAPTCHAs are usually based on text, image, audio, video or games. The strength of

each test depends on the development in research of AI and the realization of the technique.

The most commonly used CAPTCHAs are text and image-based variants. They are easy to

implement and realize [65, 83, 101, 112].

Machine learning approaches to solving classical CAPTCHAs produce success rates of

up to 70% [129]. The increase in CAPTCHA solving through machine learning contributes

to an arms race of CAPTCHAs and CAPTCHA solving. Researchers also produced new

approaches to �ght machine learning and pattern recognition using video-based gesture de-

tection [110] and comparison-based identi�cation [114]. These and mechanisms on adversar-

ial examples [89, 100, 127] are promising but not developed enough to be used yet. Googles

most recent version of reCAPTCHA seems to be considered secure for now.

12.3 Pixy: Group Creation Scheme

We introduced various ways of detecting Sybils. In this section, we introduce Pixy, our

privacy-increasing group creation scheme, tying together the previously introduced approaches.

First, we will give an overview of the scheme and then discuss the two phases of Pixy in detail.

Lastly, we will show how decision making after the last phase works.

Overview

Figure 12.1: Overview of the architecture of Pixy. [3]

Pixy consists of two phases and is structured as a modular system. It is divided into two

phases. The �rst phase is used to construct a temporary group based on group lists of un-

trusted groups, e.g., IP subnets. The second phase consists of aggregatable tests for partici-

pants to prove their independence. In Figure 12.1 the process of the scheme is illustrated with

its two phases and its three elements in total.

The elements are building blocks and can be exchanged easily to support fast assimilation

to new developments or di�erent network architectures. This is important to create a future-

proof scheme.

12.3. PIXY: GROUP CREATION SCHEME 113

Phase 1: IP-based Gatekeeping
The result of the �rst phase is a temporary group with members that are not obviously collab-

orating. As we are dealing with internet messages, there is only little information we can use

and will primarily use IP addresses similar to Tarzan and other systems [48, 70]. We assume

the protocol can determine which peer is in which subnet, which is warranted due to the use

of general internet-wide IP addresses. While we can not assume a pre-established trust graph,

some participants may build a personal, hidden trust graph over time, augmenting their de-

cision making. This trust information can be applied through the algorithms of Aikebaier et

al. [13].

We use a list of groups for our scheme. The group list functions similar to a denylist, but

we allow a single participant from each group. There should be a global group list for a given

network, containing well known collaborating groups, e.g., Google. The collection of groups

depends on the concrete threat model of the given network, e.g., a very paranoid network

might restrict groups to participants from di�erent continents by geo-IP grouping. One risk

factor for group lists are VPNs and Tor like services, so depending on the attacker model,

a network should include these or risk users including them in their group lists anyways.

To allow for evolving group lists, distributed append-only ledgers, e.g., blockchains, might

provide suitable background stability while making the lists future proof.

The check of IP addresses takes place before the actual group formation. Peers might

already cancel group formation of invalid groups according to their group list If no peer

cancels at this stage, the participants create connections to all participants and continue with

phase 2 as a temporary group.

Phase 2: Testing
Once the temporary group is formed, participants start the testing phase. For this phase, all

participants apply known Sybil detection mechanisms to test if any node in the groups are

Sybils.

The second phase is modular, so it can be constructed with di�erent puzzles. For a sen-

sible default application, we propose two independent core modules: A delaying puzzle and

a CAPTCHA.

Delaying Puzzle

The �rst presented module is a delaying puzzle. We recommend the delaying puzzle due

to the properties we outlined in Table 12.1. As for this step, a puzzle is needed that can test

the hardware of all nodes simultaneously by one veri�er node. For this, the workload on

the veri�er side has to be low, i.e. asymmetric workloads are needed, otherwise, it can lead

to a denial of service (DoS) attack, and the puzzle set per node must be unique so that no

solutions can be reused.

Delay puzzles ful�ll all the required criteria. As di�erent CPUs produce a wide spread in

cost, we require a memory-bound puzzle to have as little variance in devices as possible [15].

The puzzle veri�cation should be public to reduce the work for veri�er nodes which perform

the current testing round. However, in this testing phase every node in the group will be a

veri�er node and will set the puzzle once.

The veri�er node creates a unique puzzle for every node in the group, besides themselves,

to prevent the reuse of solutions and checks the returned responses of the nodes. The return-

ing time of the response will be recorded as well. The puzzles are distributed simultaneously

to all nodes in the group.

We applied the puzzle by Abadi et al. [10] which ful�lls our requirements (cf. Section 12.2).

114 CHAPTER 12. PIXY

CAPTCHA

In the second module of phase 2, the nodes are tested for human attention. In this puzzle, the

number of veri�er nodes can be reduced and thus the number of testing rounds. This step

should, by design, not be automatable by the attacker or regular participants. This makes

CAPTCHAs only acceptable in certain contexts, but we argue that privacy is a human-

centric concept, which makes this a good compromise [66].

As discussed in Section 12.2, thus far, we lack real-world implementations of newer and

open source CAPTCHA approaches [65, 83, 101, 112]. When reimplementing and evaluating

the approaches is not possible, we recommend the proprietary reCAPTCHA by Google [17,

55, 113] to provide at least a concrete realisation of a CAPTCHA.

Attacks on CAPTCHAs continue to improve over time, including reCAPTCHA [29,

129]. reCAPTCHA will block some bots, and it requires the e�ort to develop a machine

learning algorithm of the attacker to overcome this puzzle challenge. The bene�t of using a

CAPTCHA for a scheme like Pixy is that it prevents many kinds of attacks, while the down-

side is it requires frequent updates and �exibility on the CAPTCHA part.

Depending on the kind of CAPTCHA applied, the result can either be a binary decision

or a ’belief of humanness’, that can be used with a custom minimum threshold to accept the

participant.

Decision Making
The testing of nodes in phase two requires an aggregation of scores and decision making. We

recommend that each node be veri�er at least once to reduce the probability of manipula-

tion. This results in up toN , the number of total participants, testing rounds which can be

di�erent for all modules. For reduced rounds, the group should use a secure random scheme,

e.g., as used by dissent [36], to select nodes. For the discussion, we will assume thatN testing

rounds are performed.

The approach of evaluating the puzzle results is inspired by the approach of Cárdenas-

Haro and Konjevod [31]. In a testing round of the puzzle, the current veri�er node sets the

puzzles for every node simultaneously and uniquely. Thus, every prover node starts the com-

putation of the solution for the puzzle at the same time and should �nish at the same time.

After a delaying puzzle, the results of all provers should return at the same time.

To measure the time, the time is divided into time slots of the length t. The real length

t of the time slots depends on the time p for the puzzle solution as well as on the Internet

delay d. The length t of the time slot should be smaller than the needed time for the puzzle

computation p (t ≤ p). This requirement prevents that a prover receives and answers the

puzzle in the same time slot, therefore it would not be su�cient to measure the elapsed time.

Further, it should hold that d < t < p, i.e., the timeslot is longer than the expected network

delay. The responses to the challenges should return to the veri�er in the same time slot.

The veri�er creates a matrix of all response timeslots. Two peers, which are not distinct,

cannot respond at the same time as the solutions have to be calculated sequentially by a Sybil

node, as parallel computation would delay the response for too long. If two responses from

two peers return in the same time slot, then these two peers have a high probability to be two

distinct hardware devices. If the responses of two peers never return at the same time for all

testing rounds, then it is very likely these two peers are Sybil nodes.

Due to network delay, a response might return a timeslot late. Therefore neighboring

timeslots to the expected slot have reduced penalty for detection. The matrix values can be

aggregated over all tests. Low values correspond to a high probability of Sybils being present.

Suitable thresholds need careful evaluation of acceptable risk for the network though. All

12.4. SECURITY DISCUSSION 115

results of all puzzles need to be above the desired thresholds for each puzzle for the group

to be viable. If this condition is met, the group continues as a fully-formed group with the

desired protocol.

12.4 Security Discussion

The literature on Sybil attack prevention and CAPTCHAs did not provide evidence on the

e�ectiveness of the algorithms. So a full evaluation of Pixy is yet to be done. Instead, we will

focus on a hypothetical exploration of the attack space. The two core goals to ful�ll are:

• An attacker must not gain an advantage when Pixy is used.

• Multiple attacks must be impractical or noticeably harder by using Pixy.

Goal one is required to provide a strict improvement in privacy, while the results for goal two

would indicate the e�ectiveness of Pixy. To conclude goal one, we evaluated possibilities to

subvert the phases of our scheme.

We consider various common attackers with varying capabilities. A single attacker
node with moderate access to resources in money and IP addresses, i.e., they can access free

VPN services. Their goal is to subvert the group with little resources and preferably no cost.

A botnet, which has many fully automated nodes with IP addresses which are well spread

throughout most subnets. The goal of a botnet is to subvert the group while being eco-

nomical with little expense but large scale hardware resources. A large scale corporation or

agency of a nation-state with quite a lot of resources. The restrictions of entities of this scale

are mostly political, e.g., they do not want to be noticed.

Phase 1: IP-based Gatekeeping

The �rst phase is primarily controlled by the node initiating the group creation, an attacker

should, therefore, choose to initiate. As Pixy has no enforcement of random selection, an

attacker might freely select cooperating nodes to participate, as long as they respect the global

group list. This leads to the following attack vectors:

1. While IP spoo�ng, i.e., pretending to have a di�erent IP address from the ones you

control, allows to pass the �rst phase, usual applications of IP spoo�ng do not allow

the attacker to control the address for subsequent phases [56]. Therefore the multi-

phase setup prevents many forms of IP spoo�ng. IP spoo�ng by powerful local at-

tackers, i.e., that can reroute tra�c successfully, will still succeed.

2. Having IP address distributed over many unrelated subnets can be achieved with

many di�erent VPNs or comes naturally for botnets. As argued before, known VPNs

should be represented sensibly in the group list to prevent cheap and inconspicuous

attacks via VPNs.

Attack 2 is naturally applied for our botnet attacker, while the single attacker will have

trouble depending on the setup of the group list, increasing probability of prevention. The

large scale attacker can, depending on positioning, apply attack 1 without being detected, but

on a large scale, the activities increase detection risk signi�cantly.

116 CHAPTER 12. PIXY

Phase 2: Delaying Puzzle
In phase 2 of the group creation scheme and the �rst step for the temporary group, the par-

ticipating nodes in the group are tested on their available hardware. To overcome this step,

additional hardware is required, which is naturally available to botnets and large scale attack-

ers and only slightly increases the cost to them. In contrast, single attackers will be unable

to pass this phase with high probability. Possible circumventions like short term hardware

rentals through cloud services introduce additional latency which increases the risk of detec-

tion signi�cantly.

Phase 2: CAPTCHA
The last step in the scheme involves a test which requires human attention. A solution for

this problem of the attacker are underground CAPTCHA solving services [83, 128]. These

are services on the web which o�er to solve the provided CAPTCHA by optical character

recognition software or by human workers at around 1$ to 2$ per 1000 CAPTCHAs [107,

118].

Human attention for a single attacker will be natural to achieve on a small scale, but

preventive in large scale systems. While it is available for large scale attackers, it is either a

huge factor in cost, if done by themselves or increases the risk of detection signi�cantly. For

botnets, at last, the CAPTCHA solving services are the most viable route but increases the

cost of operation.

Attack Conclusion
All presented steps are restrictive, as they restrict previously available routes. This limits the

possibility of gains for an attacker by using Pixy, compared to other current systems.

While we showed that all phases can be broken, all strategies either increase cost, prevent

certain kinds of attacks or increase risk of detection for large scale entities, especially through

the combination of the di�erent phases. This layered security shows our original goal of

making attacks impractical or noticeably harder.

12.5 Conclusion
We developed Pixy, a �exible group creation scheme to prevent Sybil nodes in peer groups.

Pixy provides increased protection from various common attacks by applying a two-phase

scheme. Phase one creates a temporary group based on group lists and personal trust infor-

mation to exclude Sybils and known collaborators. Phase two tests all participants of the

temporary group using a memory timelock puzzle and a CAPTCHA. The results are aggre-

gated per participant allowing every user to come to a satisfying conclusion on their own.

Our �rst evaluation shows that, while the system is still susceptible to powerful attackers,

many common attack patterns are not viable when using Pixy. Therefore Pixy provides a clear

advantage over the current state of the art.

The design of Pixy is modular so additional puzzles can be included or existing ones can

be removed, e.g., the CAPTCHA if automation is required. This allows for continuous

further improvements based on recent research.

Part IV
End

117

Chapter 13

Conclusion and Outlook

Privacy for broadcasts in blockchain networks encompasses a wide area of challenges. There

are various motivations and di�erent goals. Examples for such goals are miners of blocks,

who are more focused on e�ciency then privacy, while transactions are often highly sensitive.

Applications might require information about the network, but participants might not want

to reveal their participation or other aspects of the network.

Interactions between network protocols and consensus mechanisms can stay undetected

for quite some time, leading to unexpected privacy implications through the persistence of

the ledger. This interlock of systems, network layer privacy and blockchain layer privacy, will

be one of the biggest challenges for lasting privacy design of future blockchain systems, now

that there are strong proposals for both systems independently.

13.1 Conclusion

In this thesis, we developed various privacy-focused improvements for peer-to-peer broad-

casts in public blockchain systems. From new and improved broadcast protocols in Chap-

ters 4 to 6 and 11 to privacy friendly measuring in Chapter 10 and a privacy focused group

making scheme in Chapter 12.

Chapters 4, 7 and 8 - 3P3 Flexible Strong Privacy

In Chapter 4, we describe the design of 3P3, while we analyze its properties in Chapters 7

and 8. 3P3 is a strong privacy protocol for broadcasting blockchain transactions. 3P3 can

withstand a global passive observer and maliciously acting nodes jamming communication.

The protocol can broadcast arbitrarily long messages with reduced overhead for empty mes-

sages.

The simulated analysis of 3P3 shows comparable performance to Dandelion and only

≈ 2.5× overhead over a �ood-and-prune broadcast while disregarding bandwidth overhead.

The performance impact analysis of the parameters of our system provides �exible parame-

ters for system developers using 3P3 to customize the privacy-performance decisions.

We also provided a proof of concept implementation of 3P3, validating our simulated

results. The fully optimized instance only required around 0.5s ± 0.1s for the tested in-

stances. The implementation is suitable for real-world scenarios and available as open source

software, but not ready for production usage.

119

120 CHAPTER 13. CONCLUSION AND OUTLOOK

Chapter 5 - 3P3 Phase I

Chapter 5 provides a realization of an arbitrary length extension of von Ahn et al.’s proto-

col. Further, the protocol is transformed from a point-to-point protocol to a group-only

broadcast protocol. This allows its application in the 3P3 construction for a layered privacy

protocol.

The arbitrary-length messages are made possible though introduction of a second round

of dining-cryptographers communication. This creates considerable additional overhead

compared to the �xed length version and requires transmission of large seed values to secure

the additional round. While the optimizations improve on this discrepancy, the protocol

only outperforms the �xed length protocol once a threshold of message size based on the

number of participants is reached.

The largest bene�cial optimization is the introduction of a less secure, but not less pri-

vate, mode. This mode allows optimizations for common use-cases without compromising

the privacy of the participants.

Chapter 6 - 3P3 Phase II

To provide a suitable protocol of the family of topological privacy mechanism, we trans-

formed an established contact network protocol, adaptive di�usion, into a network proto-

col in Chapter 6. We extended the original results by modeling the virtual source passing

probabilities in a more general way. Our model is based on the distance distribution of the

underlying network. Further, we provide a privacy-friendly solution to solve the resulting

equations, while smoothing out otherwise unachievable states. While the introduced indi-

rections improve privacy for participants, as less information is available to attackers, they

also reduce the reliability of the chosen parameters, as they are farther removed from reality.

To provide a real world instance of this protocol, we analyzed expected k-growing net-

work topologies for their distance distributions. These topologies are similar to networks

used by various blockchain systems. Our analysis showed approximately normally distributed

shortest paths. Lastly, we performed a parameter analysis of the resulting normal distribu-

tions. This analysis showed that the normal distributionN (µ, σ) can be approximated by

a combination of logarithms and inverse exponentials. We provide and evaluate estimators

based on the number of edges k and number of nodes n :

µ(n, k) ≈ 0.595 log(2.135n)

exp(0.314k)
+ 0.341 log(1.626n) +

0.241

exp(0.314k)
− 0.224

σ(n, k) ≈ 0.0345 log(0.925n) +
1.222

exp(0.301k)
+ 0.189

These estimators allow network participants to compute required forwarding probabilities

for our variant of adaptive di�usion.

Chapter 10 - Unobtrusive Monitoring

In Chapter 10, we collected extensive transaction dissemination data in the Bitcoin network.

We used this data to analyze transaction dissemination latencies. 98% of the collected data is

described well by a lognormal distribution, while extreme values of the distribution are better

modeled using a generalized Pareto distribution. These results are independent of geographic

location and stable over the measured time frame, but limited to the network of Bitcoin and

cannot be easily transferred to other blockchain systems.

13.1. CONCLUSION 121

We constructed a latency estimator using only eight connections, the default for the Bit-

coin network. This allows participants to monitor network dissemination latencies without

being recognized as monitoring nodes. Known extensive monitoring solutions typically cre-

ate thousands of connections, one for each known participant of the network.

We created and open sourced a proof-of-concept implementation of the monitoring con-

struction and evaluated the monitoring tool based on the collected data. To improve the

performance and accuracy of the monitoring, we construct a mechanism to determine the

di�erence between the measurement and estimate, circumventing the unknown shift of the

real distribution. The results of the provided tool show reasonably good estimations of the

inherently noisy real-world data, but due to its error correction is unable to act on short term

�uctuations.

Chapter 11 - Threshold Dining Cryptographers

In Chapter 11, we introduce a novel combination of a classical dining cryptographers protocol

and Shamir’s secret sharing technique. This combination uses the construction of the dining

cryptographers protocol in an initial group phase. Every participant receives a unique share of

a message split with Shamir’s secret sharing during the group phase. An additional broadcast

phase of the shares ensures message transmission.

Using a (n, k) Shamir’s secret sharing scheme, this construction ensures that at least k
group members initiate the broadcast before messages can be decrypted by general network

participants. As group members require k−1 additional shares to decrypt the message, they

are incentivized to further participate in the protocol. In a traditional approach, participants

might not cooperate, as they already received the message.

Our privacy analysis shows that the system provides privacy only based on the proper-

ties of the secret sharing scheme, not the dining-cryptographers construction. Once k or

more attackers participate in the dining-cryptographers group, they are able to break the se-

cret sharing scheme and identify the sender. We show, similar to the reliability requirement

by von Ahn et al., that the scheme is secure for less than k attackers, which can be used to

construct reasonably secure groups.

We provide a �rst, unoptimised solution, showing reasonable throughput rates for com-

mon applications in blockchain systems. In our simulation, we measured throughput rates

between 10 kB/s and 100 kB/s for a full broadcast simulation and over 500 kB/swith rea-

sonable privacy settings for local group dissemination.

Chapter 12 - Privacy Increasing Group Creation

Chapter 12 builds a foundation for our previously proposed group-based schemes. Pixy is a

�exible group creation scheme to reduce Sybils, i.e., a single node pretending to be multiple

nodes, and other collaborating nodes in peer groups. We provide a scenario based discussion

of Pixy, but lack a theoretical privacy analysis.

Pixy provides increased protection from various common attacks by applying a two-

phase scheme. Phase one creates a temporary group based on group lists and personal trust

information to exclude Sybils and known collaborators. Phase two tests all participants of

the temporary group using a memory timelock puzzle and a CAPTCHA. Attacks in Pixy

are still possible, but Pixy provides an advantage over the current state of the art, improving

privacy guarantees for group protocols in various common attack scenarios.

The design of Pixy is modular allowing the inclusion of additional puzzles or removal of

broken or unsuited existing puzzles. This allows for continuous further improvements based

on recent research.

122 CHAPTER 13. CONCLUSION AND OUTLOOK

13.2 Outlook

The results of this thesis can be further extended in various areas. We want to highlight some

aspects where contributions to the �eld of privacy for broadcasts and network analysis can

build upon this thesis.

Analysis of Network Behavior

Our analysis of the Bitcoin network should be extended to other blockchain systems, e.g.,

Ethereum, Monero and many more. Di�erent systems attract di�erent types of participants

who exhibit various kinds of di�erent behaviors. For a realistic evaluation of privacy proto-

cols and other related research �elds, correct behavior models are essential.

Secret Sharing and Dining-Cryptographers Networks

Secret sharing promises an enforced threshold of privacy by incentives beyond �rst cooper-

ation. Our proposal of combining secret sharing with DC networks has shortcomings that

might be overcome by alternative constructions. In a �rst step, a generalization of the concept

should be approached. This should lead to deeper insights into the strengths and weaknesses

of the mechanism.

Topological Privacy Methods

Our transformation of adaptive di�usion leads to various natural extensions for further re-

search. While the derivation of probabilities from a given distribution is a general concept

applicable to any distribution, the speci�c distributions and their parameters are not. The

analysis of distributions should be extended to other network types, which also has applica-

tions in other �elds, such as network modeling and theory.

Further, the protocol can be improved in other ways. A more direct model of the network

instead of the abstract Markov chain may lead to more accurate results. Better heuristics

to realize the Markov model in a real-world network and implementation of a probability

to return the virtual source token, further increase the viability for various more extreme

networks. Lastly, tried privacy improvements should be added and evaluated to increase the

privacy guarantees of the protocol, e.g., adding noise to transmitted parameters such as the

step number.

Privacy Preserving Broadcast Protocols

3P3, our presented privacy protocol, provides many opportunities for further optimization.

The protocol would bene�t from specialization to various alternative domains and evalu-

ation of common behavior within these domains. One large e�ector of any domain is the

expected size and variability of messages, i.e., are there many small messages or should one

expect extremely large messages.

Privacy of Group Making Schemes

Lastly, the privacy increasing group creation scheme Pixy requires new techniques for evalu-

ation and quanti�cation of privacy of group making schemes. Stochastic evaluations would

overvalue the propositions of such a scheme. Traditional attacker models, on the other hand,

underestimate the real-world bene�ts of increased trust in participants.

13.3. SUMMARY 123

13.3 Summary
With this thesis, we tackled various problems of privacy for broadcast protocols, with a fo-

cus on blockchain peer-to-peer networks. We published a dataset assisting future research

projects as well as various models and software artifacts for modeling network properties. We

constructed a novel fusion of threshold cryptography and dining-cryptographers networks,

providing new insights. We designed a group creation scheme with a focus on privacy. Lastly,

we built upon this group creation scheme with the design and proof-of-concept implemen-

tation of 3P3, a versatile privacy-preserving broadcasting protocol.

124 CHAPTER 13. CONCLUSION AND OUTLOOK

IEEE Copyright Notice

In reference to IEEE copyrighted material which is used with permission in this thesis, the

IEEE does not endorse any of Ulm University’s products or services. Internal or personal use

of this material is permitted. If interested in reprinting/republishing IEEE copyrighted mate-

rial for advertising or promotional purposes or for creating new collective works for resale or

redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/

rights_link.html to learn how to obtain a License from RightsLink. If applicable, University

Micro�lms and/or ProQuest Library, or the Archives of Canada may supply single copies of

the dissertation.

125

126 CHAPTER 13. CONCLUSION AND OUTLOOK

Bibliography

Own Publications
[1] H. Kopp, D. Mödinger, F. J. Hauck, F. Kargl, and C. Bösch. “Design of a Privacy-

Preserving Decentralized File Storage with Financial Incentives”. In: Proceedings of
IEEE Security & Privacy on the Blockchain (IEEE S&B) (affiliated with EUROCRYPT
2017). IEEE, 2017.

[2] D. Mödinger, J. Dispan, and F. J. Hauck. “Shared-Dining: Broadcasting Secret Shares

using Dining-Cryptographer Groups”. In: Accepted at 21st International Conference
on Distributed Applications and Interoperable Systems (DAIS). 2021.

[3] D. Mödinger, N. Fröhlich, and F. J. Hauck. “Pixy: A Privacy-Increasing Group Cre-

ation Scheme”. In: 5th International Conference on Network Security (ICNS). 2020.

[4] D. Mödinger and F. J. Hauck. “3P3: Strong Flexible Privacy for Broadcasts”. In: 4th
International Workshop on Cyberspace Security (IWCSS 2020). 2020.

[5] D. Mödinger, H. Kopp, F. Kargl, and F. J. Hauck. “A Flexible Network Approach

to Privacy of Blockchain Transactions”. In: Proc. of the 38th IEEE Int. Conf. on Dis-
tributed Computing Systems (ICDCS). IEEE, 2018.

[6] D. Mödinger, J.-H. Lorenz, and F. J. Hauck. “n-Adaptive Di�usion for k-Growing

Networks”. In: Submitted to Plos One. 2021.

[7] D. Mödinger, J.-H. Lorenz, R. W. van der Heijden, and F. J. Hauck. “Unobtru-

sive monitoring: Statistical dissemination latency estimation in Bitcoin’s peer-to-peer

network”. In: PLOS ONE 15.12 (Dec. 2020), pp. 1–21.

Own Publications (Unreviewed)
[8] D. Mödinger and F. J. Hauck. Bitcoin Network Transaction Inv Data with Java Times-

tamp and Originator Id. https://doi.org/10.5281/zenodo.2547396. Jan.

2019.

[9] D. Mödinger, A. Heß, and F. J. Hauck. “Arbitrary Length k-Anonymous DC Com-

munication”. In: (2021). arXiv: 2103.17091 [cs.NI].

Other References
[10] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. “Moderately hard, memory-

bound Functions”. In: ACM Transactions on Internet Technology (TOIT) 5.2 (2005),

pp. 299–327.

127

https://doi.org/10.5281/zenodo.2547396
https://arxiv.org/abs/2103.17091

128 BIBLIOGRAPHY

[11] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. ninth Dover printing, tenth GPO printing.

New York: Dover, 1964.

[12] L. von Ahn, A. Bortz, and N. J. Hopper. “K-anonymous Message Transmission”.

In: Proc. of the 10th ACM Conf. on Comp. and Comm. Sec. (CCS). Washington D.C.,

USA: ACM, 2003, pp. 122–130.

[13] A. Aikebaier, T. Enokido, and M. Takizawa. “Trustworthiness among peer processes

in distributed agreement protocol”. In: 2010 24th IEEE Int. Conf. on Advanced Infor-
mation Networking and Applications. IEEE. 2010, pp. 565–572.

[14] A. Aikebaier, T. Enokido, and M. Takizawa. “Trustworthy Group Making Algo-

rithm in Distributed Systems”. In: Human-centric Computing and Information Sci-
ences 1.1 (Nov. 2011), p. 6.

[15] I. M. Ali, M. Caprolu, and R. Di Pietro. “Foundations, Properties, and Security Ap-

plications of Puzzles: A Survey”. In: arXiv preprint arXiv:1904.10164 (2019).

[16] E. C. d. Almeida, G. Sunyé, Y. L. Traon, and P. Valduriez. “A Framework for Testing

Peer-to-Peer Systems”. In: 2008 19th International Symposium on Software Reliability
Engineering (ISSRE). Nov. 2008, pp. 167–176.

[17] Are you a robot? Introducing “No CAPTCHA reCAPTCHA”. Google Security Blog,

2014.

[18] N. Balachandran and S. Sanyal. “A review of techniques to mitigate sybil attacks”.

In: arXiv preprint arXiv:1207.2617 (2012).

[19] A. Bellet, R. Guerraoui, and H. Hendrikx. Who started this rumor? Quantifying the
natural di�erential privacy guarantees of gossip protocols. 2020. arXiv: 1902.07138
[cs.DC].

[20] E. Ben Sasson et al. “Zerocash: Decentralized anonymous payments from bitcoin”.

In: IEEE Symp. on Sec. and Priv. (SP). IEEE. 2014, pp. 459–474.

[21] A. Biryukov, D. Khovratovich, and I. Pustogarov. “Deanonymisation of Clients in

Bitcoin P2P Network”. In: Proc. of the ACM SIGSAC Conf. on Comp. and Comm.
Sec. (CCS). Scottsdale, Arizona, USA: ACM, 2014, pp. 15–29.

[22] A. Biryukov and S. Tikhomirov. “Deanonymization and linkability of cryptocur-

rency transactions based on network analysis”. In: 2019 IEEE European Symposium
on Security and Privacy (EuroS&P). 2019, pp. 172–184.

[23] N. Bitansky et al. Time-lock puzzles from randomized encodings. Association for Com-

puting Machinery, 2016.

[24] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath. “Dandelion: Redesigning the

Bitcoin Network for Anonymity”. In: Proc. of the ACM Measurement and Analysis
of Comp. Sys. (POMACS) 1.1 (June 2017), 22:1–22:34.

[25] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Veri�able delay functions”. In: An-
nual International Cryptology Conference. Springer. 2018, pp. 757–788.

[26] J. Bonneau et al. “Mixcoin: Anonymity for Bitcoin with accountable mixes”. In: Fi-
nancial Cryptography and Data Sec. Springer, 2014, pp. 486–504.

[27] N. Borisov. “Computational puzzles as Sybil defenses”. In: Sixth IEEE Int. Conf. on
Peer-to-Peer Computing (P2P’06). IEEE. 2006, pp. 171–176.

https://arxiv.org/abs/1902.07138
https://arxiv.org/abs/1902.07138

OTHER REFERENCES 129

[28] Y. Breitbart, Chee-Yong Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz. “Ef-

�ciently monitoring bandwidth and latency in IP networks”. In: Proceedings IEEE
INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

Vol. 2. Apr. 2001, 933–942 vol.2.

[29] S. S. Brown, N. DiBari, and S. Bhatia. “I Am ’Totally’ Human: Bypassing the re-

Captcha”. In: 2017 13th Int. Conf. on Signal-Image Technology & Internet-Based Sys-
tems (SITIS). IEEE. 2017, pp. 9–12.

[30] B. Butnaru et al. “P2PTester: a tool for measuring P2P platform performance”. In:

2007 IEEE 23rd International Conference on Data Engineering. Apr. 2007, pp. 1501–

1502.

[31] J. A. Cárdenas-Haro and G. Konjevod. “Detecting Sybil nodes in static and dynamic

networks”. In: OTM Confederated Int. Conf.s "On the Move to Meaningful Internet
Systems". Springer. 2010, pp. 894–917.

[32] D. Chaum. “The dining cryptographers problem: Unconditional sender and recipi-

ent untraceability”. In: Journal of cryptology 1.1 (1988), pp. 65–75.

[33] B. Cohen and K. Pietrzak. “Simple proofs of sequential work”. In: Annual Int. Conf.
on the Theory and Applications of Cryptographic Techniques. Springer. 2018, pp. 451–

467.

[34] B. Conrad and F. Shirazi. “A Survey on Tor and I2P”. In: Ninth Int. Conf. on Internet
Monitoring and Protection (ICIMP2014). 2014, pp. 22–28.

[35] A. B. Corman, P. Schachte, and V. Teague. “A Secure Group Agreement (SGA) pro-

tocol for peer-to-peer applications”. In: 21st Int. Conf. on Advanced Information Net-
working and Applications Workshops (AINAW’07). Vol. 1. IEEE. 2007, pp. 24–29.

[36] H. Corrigan-Gibbs and B. Ford. “Dissent: Accountable Anonymous Group Mes-

saging”. In: Proc of the 17th ACM Conf. on Comp. and Comm. Sec. (CCS). Chicago,

Illinois, USA: ACM, 2010, pp. 340–350.

[37] G. Danezis and P. Mittal. “SybilInfer: Detecting Sybil Nodes using Social Networks.”

In: NDSS. San Diego, CA. 2009, pp. 1–15.

[38] D. Dean and A. Stubble�eld. “Using client puzzles to protect TLS”. In: Proceedings
of the 10th conference on USENIX Security Symposium-Volume 10. USENIX Associa-

tion. 2001, p. 1.

[39] C. Decker and R. Wattenhofer. “Information propagation in the Bitcoin network”.

In: IEEE P2P 2013 Proceedings. Sept. 2013, pp. 1–10.

[40] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. Tech. rep. Naval Research Lab Washington DC, 2004.

[41] J. R. Douceur. “The Sybil Attack”. In: International workshop on peer-to-peer systems.
Ed. by P. Druschel, F. Kaashoek, and A. Rowstron. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 251–260.

[42] C. Dwork, A. Goldberg, and M. Naor. “On memory-bound functions for �ghting

spam”. In: Annual International Cryptology Conference. Springer. 2003, pp. 426–

444.

[43] C. Dwork and M. Naor. “Pricing via processing or combatting junk mail”. In: An-
nual International Cryptology Conference. Springer. 1992, pp. 139–147.

130 BIBLIOGRAPHY

[44] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. “A survey and com-

parison of peer-to-peer overlay network schemes”. In: IEEE Communications Surveys
Tutorials 7.2 (2005), pp. 72–93.

[45] M. Essaid, S. Park, and H.-T. Ju. “Bitcoin’s dynamic peer-to-peer topology”. In: In-
ternational Journal of Network Management 30.5 (2020). e2106 nem.2106, e2106.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.
2106.

[46] G. Fanti, P. Kairouz, S. Oh, and P. Viswanath. “Spy vs. Spy: Rumor Source Obfus-

cation”. In: SIGMETRICS Perform. Eval. Rev. 43.1 (June 2015), pp. 271–284.

[47] G. Fanti et al. “Dandelion++: Lightweight Cryptocurrency Networking with For-

mal Anonymity Guarantees”. In: SIGMETRICS Perform. Eval. Rev. 46.1 (Jan. 2019),

pp. 5–7.

[48] M. J. Freedman and R. Morris. “Tarzan: A peer-to-peer anonymizing network layer”.

In: Proceedings of the 9th ACM conference on Computer and communications security.

ACM. 2002, pp. 193–206.

[49] A. Fronczak, P. Fronczak, and J. A. Hołyst. “Average path length in random net-

works”. In: Phys. Rev. E 70 (5 Nov. 2004), p. 056110.

[50] M. Gasca and T. Sauer. “Polynomial interpolation in several variables”. In: Advances
in Computational Mathematics 12.4 (Mar. 2000), p. 377.

[51] A. Gervais et al. “On the Security and Performance of Proof of Work Blockchains”.

In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. CCS ’16. Vienna, Austria: ACM, 2016, pp. 3–16.

[52] P. Golle and A. Juels. “Dining Cryptographers Revisited”. In: Advances in Cryptology
- EUROCRYPT 2004. Ed. by C. Cachin and J. L. Camenisch. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004, pp. 456–473.

[53] Guanlin Bian, Yuehui Jin, and Tan Yang. “Delay measurement and analysis of net-

work performance on PlanetLab”. In: 2014 IEEE 3rd International Conference on
Cloud Computing and Intelligence Systems. 2014, pp. 706–711.

[54] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom. “Measuring La-

tency Variation in the Internet”. In: Proc. of the 12th Int. Conf. on Emerging Network-
ing EXperiments and Technologies. CoNEXT ’16. Irvine, California, USA: ACM,

2016, pp. 473–480.

[55] Introducing reCAPTCHA v3. Google Security Blog, 2018.

[56] IP Spoofing: An Introduction. Symantec, Mar. 11, 2003.

[57] K. Iwase and K. Kanefuji. “Estimation for 3-parameter lognormal distribution with

unknown shifted origin”. In: Statistical Papers 35.1 (Dec. 1994), pp. 81–90.

[58] M. O. Jackson. Social and economic networks. Princeton university press, 2010. Chap. 4.

[59] Y. I. Jerschow and M. Mauve. “Non-parallelizable and non-interactive client puzzles

from modular square roots”. In: 2011 Sixth Int. Conf. on Availability, Reliability and
Security. IEEE. 2011, pp. 135–142.

[60] R. John, J. P. Cherian, and J. J. Kizhakkethottam. “A survey of techniques to prevent

sybil attacks”. In: 2015 Int. Conf. on Soft-Computing and Networks Security (ICSNS).

IEEE. 2015, pp. 1–6.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2106
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nem.2106

OTHER REFERENCES 131

[61] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions,
Vol. 2 of wiley series in probability and mathematical statistics: applied probability and
statistics. 1995.

[62] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python.

2001–.

[63] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. “An Empirical Analysis of

Anonymity in Zcash”. In: 27th USENIX Security Symposium (USENIX Security 18).

Baltimore, MD: USENIX Association, Aug. 2018, pp. 463–477.

[64] G. O. Karame and S. Capkun. “Low-cost client puzzles based on modular exponen-

tiation”. In: European Symposium on Research in Computer Security. Springer. 2010,

pp. 679–697.

[65] K. Kaur and S. Behal. “CAPTCHA and its techniques: a review”. In: International
Journal of Computer Science and Information Technologies 5.5 (2014), pp. 6341–6344.

[66] H. Kopp, F. Kargl, C. Bösch, and A. Peter. “uMine: A Blockchain Based on Human

Miners”. In: Information and Communications Security. Cham: Springer Interna-

tional Publishing, 2018, pp. 20–38.

[67] P. Koshy, D. Koshy, and P. McDaniel. “An Analysis of Anonymity in Bitcoin Us-

ing P2P Network Tra�c”. In: Financial Cryptography and Data Security. Ed. by N.

Christin and R. Safavi-Naini. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,

pp. 469–485.

[68] B. Krishnamurthy, J. Wang, and Y. Xie. “Early measurements of a cluster-based ar-

chitecture for P2P systems”. In: Internet Measurement Workshop. 2001, pp. 105–109.

[69] S. Le Blond, D. Cho�nes, W. Caldwell, P. Druschel, and N. Merritt. “Herd: A Scal-

able, Tra�c Analysis Resistant Anonymity Network for VoIP Systems”. In: SIG-
COMM Comp. Commun. Rev. 45.4 (Aug. 2015), pp. 639–652.

[70] B. N. Levine, C. Shields, and N. B. Margolin. “A survey of solutions to the sybil

attack”. In: University of Massachusetts Amherst, Amherst, MA 7 (2006), p. 224.

[71] F. Li, P. Mittal, M. Caesar, and N. Borisov. “SybilControl: Practical Sybil defense

with computational Puzzles”. In: Proceedings of the seventh ACM workshop on Scal-
able trusted computing. ACM. 2012, pp. 67–78.

[72] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. “Graph-Theoretic Analysis of Struc-

tured Peer-to-Peer Systems: Routing Distances and Fault Resilience”. In: Proceedings
of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications. SIGCOMM ’03. Karlsruhe, Germany: Association for

Computing Machinery, 2003, pp. 395–406.

[73] M. Mahmoody, T. Moran, and S. Vadhan. “Publicly Veri�able Proofs of Sequential

Work”. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer
Science. ITCS ’13. Berkeley, California, USA: ACM, 2013, pp. 373–388.

[74] M. Mahmoody, T. Moran, and S. Vadhan. “Time-lock puzzles in the random oracle

model”. In: Annual Cryptology Conference. Springer. 2011, pp. 39–50.

[75] N. B. Margolin and B. N. Levine. “Informant: Detecting Sybils using Incentives”.

In: Int. Conf. on Financial Cryptography and Data Security. Springer. 2007, pp. 192–

207.

[76] I. D. Mastan and S. Paul. A New Approach to Deanonymization of Unreachable Bit-
coin Nodes. Cryptology ePrint Archive, Report 2018/243. 2018.

132 BIBLIOGRAPHY

[77] S. Meiklejohn et al. “A �stful of bitcoins: characterizing payments among men with

no names”. In: Proc. of the Internet Meas. Conf. ACM. 2013, pp. 127–140.

[78] R. C. Merkle. “Secure communications over insecure channels”. In: Communica-
tions of the ACM 21.4 (1978), pp. 294–299.

[79] I. Miers, C. Garman, M. Green, and A. D. Rubin. “Zerocoin: Anonymous distributed

e-cash from bitcoin”. In: Proc. of the IEEE Symp. on Sec. and Priv. (SP). IEEE. 2013,

pp. 397–411.

[80] A. Miller, M. Möser, K. Lee, and A. Narayanan. “An Empirical Analysis of Linka-

bility in the Monero Blockchain”. In: CoRR abs/1704.04299 (2017).

[81] A. Miller et al. Discovering bitcoin’s public topology and influential nodes. https:
/ / allquantor . at / blockchainbib / pdf / miller2015topology . pdf.

2015.

[82] S. B. Mokhtar, G. Berthou, A. Diarra, V. Quéma, and A. Shoker. “RAC: A Freerider-

Resilient, Scalable, Anonymous Communication Protocol”. In: 2013 IEEE 33rd Int.
Conf. on Distributed Computing Systems. July 2013, pp. 520–529.

[83] M. Moradi and M. Keyvanpour. “CAPTCHA and its Alternatives: A Review”. In:

Security and Communication Networks 8.12 (2015), pp. 2135–2156.

[84] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf. 2009.

[85] T. Neudecker, P. Andel�nger, and H. Hartenstein. “Timing Analysis for Inferring

the Topology of the Bitcoin Peer-to-Peer Network”. In: 2016 Intl IEEE Conferences
on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data Computing, Internet of Peo-
ple, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld).

July 2016, pp. 358–367.

[86] S. Noether. Ring Signature Confidential Transactions for Monero. Cryptology ePrint

Archive, Report 2015/1098. 2015.

[87] S. Noether and S. Noether. Monero is Not That Mysterious. Tech. rep. https://
lab.getmonero.org/pubs/MRL-0003.pdf. 2014.

[88] L. Norman, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions, Vol.
1 of wiley series in probability and mathematical statistics: applied probability and
statistics. 1994.

[89] M. Osadchy, J. Hernandez-Castro, S. Gibson, O. Dunkelman, and D. Pérez-Cabo.

“No bot expects the DeepCAPTCHA! Introducing immutable adversarial exam-

ples, with applications to CAPTCHA generation”. In: IEEE Transactions on Infor-
mation Forensics and Security 12.11 (2017), pp. 2640–2653.

[90] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Veri�able Secret

Sharing”. In: Advances in Cryptology — CRYPTO ’91. Ed. by J. Feigenbaum. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1992, pp. 129–140.

[91] A. P�tzmann and M. Hansen. “Anonymity, unlinkability, undetectability, unob-

servability, pseudonymity, and identity management-a consolidated proposal for ter-

minology”. In: Version v0 31 (2008), p. 15.

[92] K. Z. Pietrzak. “Simple veri�able delay functions”. In: 10th Innovations in Theoretical
Computer Science Conference. Vol. 124. 2019.

https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lab.getmonero.org/pubs/MRL-0003.pdf
https://lab.getmonero.org/pubs/MRL-0003.pdf

OTHER REFERENCES 133

[93] M. Ripeanu and I. Foster. “Mapping the Gnutella Network: Macroscopic Properties

of Large-Scale Peer-to-Peer Systems”. In: Peer-to-Peer Systems. Ed. by P. Druschel, F.

Kaashoek, and A. Rowstron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,

pp. 85–93.

[94] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto.

Massachusetts Institute of Technology, 1996.

[95] D. Ron and A. Shamir. “Quantitative analysis of the full bitcoin transaction graph”.

In: Financial Cryptography and Data Security. Springer, 2013, pp. 6–24.

[96] S. Roos, H. Salah, and T. Strufe. “Comprehending Kademlia Routing - A Theoret-

ical Framework for the Hop Count Distribution”. In: CoRR abs/1307.7000 (2013).

arXiv: 1307.7000.

[97] T. Ru�ng, P. Moreno-Sanchez, and A. Kate. “CoinShu�e: Practical decentralized

coin mixing for Bitcoin”. In: Computer Security-ESORICS 2014. Springer, 2014, pp. 345–

364.

[98] E. Al-Shaer and Yongning Tang. “MRMON: remote multicast monitoring”. In: 2004
IEEE/IFIP Network Operations and Management Symposium (IEEE Cat. No.04CH37507).

Vol. 1. Apr. 2004, 585–598 Vol.1.

[99] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979), pp. 612–

613.

[100] C. Shi et al. “Adversarial CAPTCHAs”. In: arXiv e-prints (Jan. 2019), pp. 1–16. arXiv:

1901.01107.

[101] V. P. Singh and P. Pal. “Survey of di�erent types of CAPTCHA”. In: International
Journal of Computer Science and Information Technologies 5.2 (2014), pp. 2242–2245.

[102] W. Stadje. “The Collector’s Problem with Group Drawings”. In: Advances in Applied
Probability 22.4 (1990), pp. 866–882.

[103] S. D. G. Stefan Saroiu P. Krishna Gummadi. “Measurement study of peer-to-peer

�le sharing systems”. In: SPIE Proc. Vol. 4673. 2001, pp. 1–15.

[104] D. Stutzbach and R. Rejaie. “Understanding Churn in Peer-to-Peer Networks”. In:

Proceedings of the 6th ACM SIGCOMM Conference on Internet Measurement. IMC

’06. Rio de Janeriro, Brazil: Association for Computing Machinery, 2006, pp. 189–

202.

[105] H. Subramanian. “Decentralized blockchain-based electronic marketplaces.” In: Com-
mun. ACM 61.1 (2018), pp. 78–84.

[106] F. Tegeler and X. Fu. “SybilConf: computational puzzles for con�ning Sybil attacks”.

In: 2010 INFOCOM IEEE Conference on Computer Communications Workshops. IEEE.

2010, pp. 1–2.

[107] Top 10 Captcha Solving Services Compared. prowebscraper.

[108] S. Tritilanunt, C. Boyd, E. Foo, and J. M. G. Nieto. “Toward non-parallelizable client

puzzles”. In: Int. Conf. on Cryptology and Network Security. Springer. 2007, pp. 247–

264.

[109] D. Tsoumakos and N. Roussopoulos. “Analysis and Comparison of P2P Search Meth-

ods”. In: Proceedings of the 1st International Conference on Scalable Information Sys-
tems. InfoScale ’06. Hong Kong: ACM, 2006, 25–es.

[110] E. Uzun, S. P. H. Chung, I. Essa, and W. Lee. “rtCaptcha: A Real-Time CAPTCHA

Based Liveness Detection System.” In: NDSS. 2018.

https://arxiv.org/abs/1307.7000
https://arxiv.org/abs/1901.01107

134 BIBLIOGRAPHY

[111] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. “CAPTCHA: Using hard AI

problems for security”. In: Int. Conf. on the Theory and Applications of Cryptographic
Techniques. Springer. 2003, pp. 294–311.

[112] L. Von Ahn, M. Blum, and J. Langford. “Telling humans and computers apart auto-

matically”. In: Communications of the ACM 47.2 (2004), pp. 56–60.

[113] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. “reCAPTCHA:

Human-based character recognition via web security measures”. In: Science 321.5895

(2008), pp. 1465–1468.

[114] H. Wang et al. “A Captcha Design Based on Visual Reasoning”. In: 2018 IEEE Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 1967–1971.

[115] P. Wang, P. Ning, and D. S. Reeves. “A k-Anonymous Communication Protocol

for Overlay Networks”. In: Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security. ASIACCS ’07. Singapore: Association for

Computing Machinery, 2007, pp. 45–56.

[116] D. J. Watts and S. H. Strogatz. “Collective dynamics of ‘small-world’ networks”. In:

nature 393.6684 (1998), pp. 440–442.

[117] R. Watve, C. Mishra, and S. Sane. Passive network latency monitoring. US Patent

8,958,327. Feb. 2015.

[118] Website 2CAPTCHA. 2CAPTCHA.

[119] G. Welch, G. Bishop, et al. An introduction to the Kalman filter. 1995.

[120] B. Wesolowski. “E�cient veri�able delay functions”. In: Annual Int. Conf. on the
Theory and Applications of Cryptographic Techniques. Springer. 2019, pp. 379–407.

[121] S. N. Wolfson. “Bitcoin: the early market”. In: Journal of Business & Economics Re-
search (Online) 13.4 (2015), p. 201.

[122] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. “Dissent in Numbers:

Making Strong Anonymity Scale.” In: OSDI. 2012, pp. 179–182.

[123] A. Yeow. Bitnodes. https://github.com/ayeowch/bitnodes. Accessed:

2019-05-29. 2019.

[124] C. Yu et al. “Software-De�ned Latency Monitoring in Data Center Networks”. In:

Passive and Active Measurement. Ed. by J. Mirkovic and Y. Liu. Cham: Springer In-

ternational Publishing, 2015, pp. 360–372.

[125] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. “SybilLimit: A near-optimal Social

Network Defense against Sybil Attacks”. In: 2008 IEEE Symposium on Security and
Privacy (sp 2008). IEEE. 2008, pp. 3–17.

[126] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. “SybilGuard: Defending

against Sybil Attacks via Social Networks”. In: IEEE/ACM Transactions on network-
ing 16.3 (2008), pp. 576–589.

[127] Y. Zhang, H. Gao, G. Pei, S. Kang, and X. Zhou. “E�ect of Adversarial Examples on

the Robustness of CAPTCHA”. In: 2018 Int. Conf. on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC). IEEE. 2018, pp. 1–109.

[128] B. Zhao et al. “Towards Evaluating the Security of Real-World Deployed Image CAPTCHAs”.

In: Proceedings of the 11th ACM Workshop on Artificial Intelligence and Security.

ACM. 2018, pp. 85–96.

[129] Y. Zhou, Z. Yang, C. Wang, and M. Boutell. “Breaking Google reCaptcha V2”. In:

Journal of Computing Sciences in Colleges 34.1 (2018), pp. 126–136.

https://github.com/ayeowch/bitnodes

	I Preliminaries
	Introduction
	Background
	Privacy Protocols

	II 3P3: Strong Flexible Privacy
	Overview
	Phase I: Arbitrary Length k-Anonymity
	Phase II: n-Adaptive Diffusion
	Security and Privacy
	Performance

	III Privacy Extensions
	Overview
	Unobtrusive Monitoring
	Threshold Cryptography for k-Anonymous Broadcasts
	Pixy: Privacy-Increasing Group Creation

	IV End
	Conclusion and Outlook

