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Abstract—Modern peer-to-peer networks provide a lot of value.
However, as the networks handle more and more sensitive data,
e.g. in cryptocurrencyies, privacy becomes an issue. Several
approaches to provide efficient privacy to network participants
rely on group formation with little or no regard to the privacy
impact of how groups are created. Group creation is often based
on random selection, which can easily be highjacked by attackers.
We propose Pixy, an extensible, component-based scheme to
increase privacy during group formation stages beyond current
approaches. Our scheme provides a two-stage setup for group
formation. First, a selection based on personal and network-wide
collaboration lists reduces the attack surface for group initiators.
Second, a testing phase based on cryptographic puzzles and, for
suitable contexts, CAPTCHAs sort out Sybil attackers. We show
that this scheme improves the current state of privacy in group-
creation processes.

I. INTRODUCTION

Many cryptocurrency systems got popular in the last years.
They apply peer-to-peer (P2P) networks for the underlying
architecture. Such a P2P network is an easy way to realise a
fully distributed, scalable system. Unfortunately, the combina-
tion of distribution and sensible financial information creates
privacy problems.

One approach to solving privacy on the network level
applies group-based privacy mechanisms [7], [17], [38]. The
privacy is based on the indistinguishability of the originator
of a message from all other network participants, i.e. the
anonymity set. Although, if multiple participants of the net-
work collude, they can reduce the effective privacy of this
method.

In a group-based network protocol, the current state of the
art Sybil detection techniques would be performed during the
actual process of the group-based communication protocol.
But during this process, privacy could have been violated
already. To prevent this, testing needs to be done before
any privacy requiring group communication takes places. This
creates a novel combination of group-based communication
techniques and Sybil detection mechanisms, as the current
state of the art relies on problematic assumptions, e.g., on
already established trust relationships. Those can be easily
gained by the attacker through short preparation times before
the attack.

Contribution

We propose Pixy, a novel group creation scheme focusing on
privacy for the participants. Pixy increases privacy guarantees
for group creation, reducing the required group size for a given
desired privacy level, as they are used by von Ahn et al. [7]

and others. The scheme provides a flexible component-based
approach and well-suited default mechanisms.

Roadmap
The structure of this paper is as follows: Section II discusses

existing group creation strategies and Section III will give an
overview of the relevant background such as mechanisms we
apply and the scenario we operate in. In Section IV we will
describe Pixy, our group creation scheme. Lastly in Section V
we will provide a first evaluation of Pixy.

II. RELATED WORK

The literature does not have any ready-made solution for
group formation under Sybil attacks or collaboration, as Sybil
attack detection and prevention have to be customised to the
underlying architecture to be effective.

But there are two noteworthy group creation schemes for
privacy or security, which we will discuss here. The trust-
worthy group making algorithm [9] groups nodes based on a
partially established trust graph between the nodes. The Secure
group agreement protocol [19] deals with a group invitation
message from which the group members can be determined
and verified.

A. Trustworthy Group Making Algorithm
In 2011 Aikebaier et al. [9] published a novel approach

which builds a group of peers based on transitive trust.
They apply their previous trustworthiness concept [8]: A peer
is considered more trustworthy, the more messages a peer
successfully forwards.

Aikebaier et al. develop a broadcast algorithm which relies
on the trustworthiness of the individual peers for a formed
group. Group formation is carried out via a previously estab-
lished trust graph and a group initiator peer which calculates
the trustworthiness of the other peers from its point of view.
The trustworthiness of a node is either direct trustworthiness
computes as a ration of several successful interactions to all
interactions with such a node, or as transitive trust based on
direct trust multiplied by the trust of the intermediate path. For
multiple paths, the maximum trust value is chosen. If there
have been no previous interactions, direct trust is undefined.

To form a group, Aikebaier et al. [9] start with one source
peer which invites the neighbour peers with trustworthiness
over a specific threshold. These neighbour peers then introduce
their neighbour peers with a trust value over this threshold to
the source peer. If a group cannot be formed with the desired
threshold, the source peer reduces the threshold and restarts
the group formation.



B. Secure Group Agreement Protocol

The approach by Corman et al. [19] describes another group
building mechanism in the context of peer-to-peer games over
the Internet. In this context, a subset of peers in the network
can form a verification group for occurred events of a game.
Corman et al. base their approach on a distributed hash table
(DHT) over a P2P network, which maps the peers and files into
the key spaces using a hash function, as well as an established
public key infrastructure.

A group initiator computes an invitation message for the
group members and sends it to the peers of the group.
Every invited peer answers with an acceptation message. If
a response of a peer does not return, the group peers try to
forward the invitation to the missing peer. If the answer of
the absent peer is still missing, the group formation will be
aborted.

An invitation message consists of a signature and hashable
contents, including a group id, timestamp, purpose and an
incrementing member number. Peers are chosen randomly
based on the random oracle property of the hash value of
the content, to prevent precomputation or groups and produce
well-randomized group composition.

C. Applicability

The two group formation protocols serve different purposes
in the field of peer-to-peer networks and are therefore not well
applicable to the given problem of increasing privacy. The one
by Corman et al. [19] represents a verified group invitation
message, and the other by Aikebaier et al. [9] is based on
already established trust relations between peers and contains
an initiator peer which starts the group formation with the
most trustworthy neighbour peers.

In our situation, the verified invitation message could be
used to form a group, but would not help with our problem
of Sybil attacks and collaboration. The group formation by
Aikebaier would support the protection of the group forming
against unfamiliar nodes, but if one Sybil peer is in the trust
range, it can invite other Sybil nodes and the intrusion would
never be detected. So these approaches are not suitable for our
problem.

III. BACKGROUND

In this section, we will discuss the relevant background
information. First, we will elaborate on our assumptions and
scenario, setting important boundary conditions for viable
mechanisms. Second, we will discuss some possible mech-
anisms and classifications of mechanisms we will apply in the
scheme.

A. Scenario and Assumptions

We attempt to create a group of nodes in a public P2P
network, which can be joined by arbitrary participants. The
P2P network is established over the Internet without a wireless
connection. The connected devices are conventional computers
without relying on a camera or microphone. For the purpose

of this paper, we consider group sizes of at least 3 and at most
20 nodes.

We assume nodes will act rational and will not deny
participation, as non-participation can be handled while han-
dling network reliability concerns, which would needlessly
complicate explanations. Communication within the network
is secured and by usual means such as TLS. We further
assume that attackers focus on utilizing the protocol and not on
implementation errors or network properties, but no previously
established trust network is required.

B. Sybil Prevention and Detection Mechanisms

When an attacker claims to have multiple identities to get
an advantage, that’s called a Sybil attack [23]. Sybil attacks
typically occur in applications like online voting and reputation
systems [28], [32]. P2P networks with no certificate authority
are generally vulnerable to Sybil attacks [23].

Categories of Detection Mechanisms: We provide an
overview over typical mechanisms to detect Sybils based on
previous survey articles [11], [28], [32].1

• Trusted Certification makes a certification authority
responsible for preventing Sybils [23].

• Resource Testing assumes limited hardware for partici-
pants and little variance in resources. If all participants
need to prove the amount of resources they can expend,
e.g., by a proof of work scheme, a Sybil attacker can
only provide a fraction of the resources compared to a
non-Sybil node [14], [33], [45].

• Recurring Cost reduces the complexity of the resource
check but repeats it over time. An attacker, therefore, has
to provision the required resources over longer amounts
of time, renting additional resources in the beginning, is
therefore uneconomical [14].

• Incentive-based Detection provides protocol level in-
centives, e.g., increased trust or virtual coins, to a node
informing of collusion by cryptographic proofs of mes-
sages [36].

• Social Graph requires an already established social trust
graph, which is evaluated for connections between the
area of honest nodes and dishonest node [21], [53], [54].

Most schemes try to discourage the attacker by increasing
the cost of an attack over the profit of the attack. While the
Sybil attack cannot be prevented in full, the probability can
be reduced. The effectiveness of Sybil detection or prevention
technique depends on the use of a suitable technique for the
current architecture [28], [32].

We exclude Privilege Attenuation, which is not suited for
P2P networks, Location and Position Verification and Re-
ceived Signal Strength Indication-based schemes, as they do
not work for wired internet connections. Lastly, we also do
not consider Random Key Pre-Distribution as they require
a static, i.e., non-dynamic, setup phase. From the remaining
techniques we will restrict ourselfes to resource testing, as

1Note that we could not determine clear first authorship between the very
similar [32] and [11].



trusted certification either requires a trusted third party or
another form of consensus. We do not consider recurring costs
for now, as they could be implemented as a simple extension
to our scheme. We also exclude social graph mechanisms as
they require a pre-established trust graph, but they provide
promising enhancements for pixy in long-running networks.

Resource Testing: Resource testing can be realised for
Sybil detection and prevention by well known computational
puzzles [22], [25], [37]. In the literature, there are different
designations for such puzzles and these often confuse.

A puzzle is used between a prover and a verifier. In general,
a puzzle consists of three phases: Generation, solving and
verification of the puzzle. Puzzles can be interactive or non-
interactive and have a symmetric or asymmetric workload. The
puzzles can further be divided by their application, which
resources are used, and implementation of the verification
process [10].

The considered application types are pricing puzzles, delay-
ing puzzles, timing puzzles and AI hard puzzles, sometimes
called CAPTCHAs. Delaying puzzles require a predefined
amount of time and are sometimes called timelock puzzles [42]
while timing puzzles have no predetermined time at construc-
tion. Pricing puzzles have a known lower-bound on resources
and are used to increase the cost of an otherwise cheap
operation [25].

Puzzles can further be separated by resources, most of-
ten: CPU, memory, bandwidth, network latency or ordering
and human attention. Applicability depends on the use-case
and setting. Lastly, there are further properties of puzzles
as, the most important are the uniqueness of the challenge,
unforgeability of solutions and non-parallelisability of the
computation.

For this work, we evaluated several puzzles based on these
properties, shown in Table I.

C. CAPTCHAs

CAPTCHAs are mechanisms to tell humans and machines
apart [48], [49]. As they prevent automation, they are well
suited to prevent automation-based Sybil attacks [31], e.g., by
botnets. It is important to note, that they can be only applied in
contexts where automation is not an important goal. We argue
that privacy is mostly relevant for humans, so having humans
verify the initial step of a privacy-enhancing group formation
is acceptable and automation is not desired.

CAPTCHAs are usually based on text, image, audio, video
or games, e.g., jigsaws. The strength of each test depends
on the development in research of AI and the realisation of
the technique. The most commonly used CAPTCHAs are text
and image-based variants. They are easy to implement and
realise [30], [39], [44], [49].

Classical approaches have been targeted by machine learn-
ing research, which produces success rates of up to 70% [57]
contributing to an arms race of CAPTCHAs and CAPTCHA
solving. Research also produced new approaches to fight ma-
chine learning and pattern recognition using video-based ges-
ture detection [47] and comparison-based identification [51].

These and mechanisms on adversarial examples [40], [43],
[55] are promising but not developed enough to be used yet.
Googles most recent version of reCAPTCHA seems to be
considered secure for now.

IV. PIXY: GROUP CREATION SCHEME

This section presents Pixy, our privacy-increasing group
creation scheme. First, we will give an overview of the scheme
and then discuss the two phases of Pixy in detail. Lastly, we
will show how decision making after the last phase works.

A. Overview

Fig. 1. Overview of the architecture of Pixy.

Pixy consists of two phases and is structured as a modular
system. It is divided into two phases. The first phase is used to
construct a temporary group based on group lists of untrusted
groups, e.g., IP subnets. The second phase consists of aggre-
gatable tests for participants to prove their independence. In
figure 1 the process of the scheme is illustrated with its two
phases and its three elements in total.

The elements are building blocks and can be exchanged
easily to support fast assimilation to new developments or
different network architectures. This is important to create a
future proof scheme.

B. Phase 1: IP-based Gatekeeping

The result of the first phase is a temporary group with
members that are not obviously collaborating. As we are
dealing with internet messages, there is only little information
we can use and will primarily use IP addresses similar to other
systems such as Tarzan and others [26], [32]. We assume the
protocol can determine which peer is in which subnet, which is
warranted due to the use of general internet-wide IP addresses.
While we can not assume a pre-established trust graph, some
participants may build a personal, hidden trust graph over time,
augmenting their personal decision making.

We use a group list for our scheme, similar to blacklists,
we only allow one participant per group. There should be
a global group list for a given network, containing well
known collaborating groups, e.g., google. The collection of
groups depends on the concrete threat model of the given
network, e.g., a very paranoid network might restrict groups to
participants from different continents by geo IP grouping. One
risk factor for group lists are VPNs and Tor like services, so
depending on the attacker model, a network should include
these or risk users including them in their personal group
lists anyways. To allow for evolving group lists, distributed



Time-lock Non-parallelisable Memory-bound PoSW Delay
[12], [29], [34], [42] [27], [46] [6], [24] [18], [35] [13], [41], [52]

Resource CPU CPU Memory CPU CPU
Simultaneous + + + + +
Asymmetric + + + + +
Implicit - ± - - -
Unforgeable + + + + +
Unique Puzzle + + + + +
Unique Solution + + + - +
Sequential + ± + + -

TABLE I
OVERVIEW OVER THE CHARACTERISTICS OF THE INTERACTIVE PUZZLES: TIME-LOCK PUZZLE, NON-PARALLELISABLE PUZZLE, MEMORY-BOUND

FUNCTION, PROOF OF SEQUENTIAL WORK (POSW) AND DELAY FUNCTION. + SHOWS THAT A PUZZLE SUPPORTS THE PROPERTY, WHILE - SIGNALS NO
SUPPORT. ± SHOWS THAT SUPPORT IS NON-HOMOGENOUS OVER EVALUATED VARIANTS.

append-only ledgers, e.g., blockchains, might provide suitable
background stability while making the lists future proof.

The check of IP addresses takes place before the actual
group formation. Peers might already cancel group formation
of invalid groups according to their group list If no peer
cancels at this stage, the participants create connections to all
participants and continue with phase 2 as a temporary group.

C. Phase 2: Testing

Once the temporary group is formed, participants start the
testing phase. For this phase, all participants apply known
Sybil detection mechanisms to test if any node in the groups
are Sybils.

The second phase is modular, so it can be constructed
with different puzzles. For a sensible default application, we
propose two independent core modules: A delay puzzle and a
CAPTCHA.

Delaying Puzzle: The first presented module is a delaying
puzzle. We recommend the delaying puzzle due to the proper-
ties we outlined in Table I. As for this step, a puzzle is needed
that can test the hardware of all nodes simultaneously by one
verifier node. For this, the workload on the verifier side has
to be low, i.e. asymmetric workloads are needed, otherwise, it
can lead to a denial of service (DoS) attack, and the puzzle set
per node must be unique so that no solutions can be reused.

Delay puzzles fulfil all the required criteria. As different
CPUs produce a wide spread in cost, we require a memory-
bound puzzle to have as little variance in devices as possi-
ble [10]. The puzzle verification should be public to reduce the
work verifier nodes which perform the current testing round.
Although, in this testing phase every node in the group will
be a verifier node and will set the puzzle once.

The verifier node creates a unique puzzle for every other
node in the group to prevent the reuse of solutions and checks
the returned responses of the nodes. The returning time of the
response will be recorded as well. The puzzles are distributed
simultaneously to all nodes in the group.

We applied the puzzle by Abadi et al. [6], but Dwork
et al. [24] explored the same approach. They suggested a
different random function, for simplicity, we restrict ourselves
to the initial approach.

The concept of Abadi et al. for a memory-bound function
is based on a tree with depth k. For now, k be an integer.

The tree is constructed from a random leaf value x0 to the
root value xk. This construction ensures a sufficient size of
the tree, around the size of (k + 1)(k + 2)/2. The depth k of
the tree has to be much smaller than 2n, with n an integer.
The authors suggest that k should fulfil k < 2n−5. The tree
is computed by the function F : [0, 2n − 1]→ [0, 2n − 1]. F
is a random function with no permutation.

The equation
xi+1 = F (xi)⊕ i

with the index i ∈ (0, . . . , k − 1) calculates the nodes in the
path from the leaf x0 to the root value xk. The calculation of
the tree is a chain of repetitive applications of the function F .

The verifier has to choose a random leaf value x0 and
construct the tree path from x0 to xk. Over the path from
x0 to xk, a checksum is built and sent to the prover with the
root value xk. The verifier adds the checksum of the path to
x0 and the prover has to compute x0.

To find the desired element, the prover computes the inverse
function F−1 of F . The function F is chose in such a
way, that computing F−1 is less efficient than a memory
access. So the most efficient solution is to construct a memory
table of size 2n for F and do reverse lookups. A depth-
first search computation of the solution requires unpredictable
random access to distributed locations of memory. From that,
the prover constructs possible pre-image chains, which are
compared to the given checksum by the verifier. If a solution is
found, the verifier just needs to check if the solution matches
x0.

CPU-intensive algorithms for this puzzle solution exist, but
for a good choice of the function F and the parameters n
and k, these approaches do not bring any advantages. These
solutions would need a longer time span to solve the puzzle
than to use the memory-bound one.

Abadi et al. also give relative values for the choice of
parameters. The researchers of [6] suppose that the work
f for the function F () should be (r/8) 6 f 6 r and r
is the work for a memory read to prevent a fast inversion
and computation. The depth k has to be chosen carefully
with the assumptions that k < 2n−5 to prevent cache lines,
k >> 4 · (f/r) to force a high work ratio on the prover,
k > (2(n/2)+1 ·

√
f/r ·

√
c) with c as a cost factor for CPU

intensive solutions to prevent a CPU-intensive search and



k > (2(n/2)+1 ·
√

1/p ·
√

(f + w)/r) so that the table can be
built efficiently.

The integer p represents the number of such combined
problems. A problem is considered as finding a x0 from
xk. The costs of memory reading and writing are considered
equal (r = w). The parameters c, r and w are integers.
Abadi et al. [6] also provided an example for F and tested
common cryptographic hash functions. They show that F
can be constructed as a random function generated through
a master function by F (x) = MF (x) ⊕ j = G(t, x). G
consists of two predistributed random tables of sizie 2

n
2 and

discards the 16 most- and least significant bits of a multi-
plication of table entries. The resulting function is F (x) =
F (a0|a1)middle-bits(t0[ao] · t1[a1]).

The puzzle can be solved a little bit faster with the help
of better hardware, but not that much faster than it would be
with CPU-bound puzzles. For the uniqueness of the puzzle,
the function F (x) = MF (x)⊕ j and x0 has to be varied for
every node. [6]

A closer mathematical and practical examination of the
concept of Abadi et al. [6] in the direction of a concrete
realisation would exceed the scope of this paper.

CAPTCHA: In the second module of phase 2, the nodes
are tested for human attention. In this puzzle, the number of
verifier nodes can be reduced and thus the number of testing
rounds. This step should, by design, not be automatable by
the attacker or regular participants. This makes CAPTCHAs
only acceptable in certain contexts, but we argue that privacy
is a human-centric concept, which makes this a good compro-
mise [31].

As discussed in Section III, thus far, we lack real-world
implementations of newer and open source CAPTCHA ap-
proaches [30], [39], [44], [49]. When reimplementing and
evaluating the approaches is not possible, we recommend the
proprietary reCAPTCHA by Google [1], [2], [50] to provide
at least a concrete realisation of a CAPTCHA.

Though, attacks on CAPTCHAs continue to improve over
time and do not stop for reCAPTCHA [15], [57]. reCAPTCHA
will block some bots, and it requires the effort to develop a
machine learning algorithm of the attacker to overcome this
puzzle challenge. The benefit of using a CAPTCHA for a
scheme like Pixy prevent many kinds of attacks but require
frequent updating and flexibility on the CAPTCHA part.

Depending on the kind of CAPTCHA applied, the result
can either be a binary decision or a ’belief of humanness’,
that can be used with a custom minimum threshold to accept
the participant.

D. Decision Making

The testing of nodes in phase two requires an aggregation of
scores and decision making. We recommend that each node be
verifier at least once to reduce the probability of manipulation.
This results in up to N , the number of total participants, testing
rounds which can be different for all modules. For reduced
rounds, the group should use a secure random scheme, e.g.,

as used by dissent [20], to select nodes. For the discussion,
we will assume that N testing rounds are performed.

The approach of evaluating the puzzle results is inspired
by the approach of Cárdenas-Haro and Konjevod [16]. In a
testing round of the puzzle, the current verifier node sets the
puzzles for every node simultaneously and uniquely. Thus,
every prover node starts the computation of the solution for
the puzzle at the same time and should finish at the same time.
After a delaying puzzle, the results of all provers should return
at the same time.

To measure the time, the time is divided into time slots of
the length t. The real length t of the time slots depends on the
time p for the puzzle solution as well as on the Internet delay d.
The length t of the time slot should be smaller than the needed
time for the puzzle computation p (t ≤ p). This requirement
prevents that a prover receives and answers the puzzle in the
same time slot, therefore it would not be sufficient to measure
the elapsed time. Further, it should hold that d < t < p, i.e.,
the timeslot is longer than the expected network delay. The
responses to the challenges should return to the verifier in the
same time slot.

The verifier creates a matrix of all response timeslots. Two
peers, which are not distinct, cannot respond at the same time
as the solutions have to be calculated sequentially by a Sybil
node. If two responses from two peers return in the same time
slot, then these two peers have a high probability to be two
distinct hardware devices. If the responses of two peers never
return at the same time for all testing rounds, then it is very
likely these two peers are Sybil nodes.

Due to network delay, a response might return a timeslot
late. Therefore neighbouring timeslots to the expected slot
have reduced penalty for detection. The matrix values can
be aggregated over all tests. Low values correspond to a
high probability of Sybils being present. Suitable thresholds
need careful evaluation of acceptable risk for the network
though. All results of all puzzles need to be above the desired
thresholds for each puzzle for the group to be viable. If this
condition is met, the group continues as a fully-formed group
with the desired protocol.

V. SECURITY EVALUATION

The literature on Sybil attack prevention and CAPTCHAs
did not provide evidence on the effectiveness of the algorithms.
So a full evaluation of Pixy is yet to be done. Instead, we will
focus on a theoretical exploration of the attack space. The two
core goals to fulfil are:

• An attacker must not gain an advantage when Pixy is
used.

• Multiple attacks must be impractical or noticeably harder
by using Pixy.

Goal one is required to provide a strict improvement in privacy,
while the results for goal two would indicate the effectiveness
of Pixy. To reach a conclusion on goal one, we evaluated
possibilities to subvert the phases of our scheme.

We consider various common attackers with varying ca-
pabilities. A single attacker node with moderate access to



resources in money and IP addresses, i.e., they can access
free VPN services. Their goal is to subvert the group with
little resources and preferably no cost. A botnet, which has
many fully automated nodes with IP addresses which are well
spread throughout most subnets. The goal of a botnet is to
subvert the group while being economical with little expense
but large scale hardware resources. A large scale corporation
or agency of a nation-state with quite a lot of resources. The
restrictions of entities of this scale are mostly political, e.g.,
they do not want to be noticed.

A. Phase 1: IP Addresses

The first phase is primarily controlled by the node initiating
the group creation, an attacker should therefore choose to
initiate. As Pixy has no enforcement of random selection, an
attacker might freely select cooperating nodes to participate,
as long as they respect the global group list. This leads to the
following attack vectors:

1) While IP spoofing, i.e., pretending to have a different IP
address from the ones you actually control, allows to pass
the first phase, usual applications of IP spoofing do not
allow the attacker to control the address for subsequent
phases [3]. Therefore the multi-phase setup prevents
many forms of IP spoofing. IP spoofing by powerful local
attackers, i.e., that can reroute traffic successfully, will
still succeed.

2) Having IP address distributed over many unrelated
subnets can be achieved with many different VPNs or
comes naturally for botnets. As argued before, known
VPNs should be represented in a sensible way in the
group list to prevent cheap and inconspicuous attacks via
VPNs.

Attack 2 is naturally applied for our botnet attacker, while
the single attacker will have trouble depending on the setup
of the group list, increasing probability of prevention. The
large scale attacker can, depending on positioning, apply attack
1 without being detected, but on a large scale, the activities
increase detection risk significantly.

B. Phase 2: Delay Puzzle

In phase 2 of the group creation scheme and the first
step for the temporary group, the participating nodes in the
group are tested on their available hardware. To overcome
this step, additional hardware is required, which is naturally
available to botnets and large scale attackers and only slightly
increases the cost to them. Contrast to this single attackers
will be unable to pass this phase with high probability. Possible
circumventions like short term hardware rentals through cloud
services introduce additional latency which increases the risk
of detection significantly.

C. Phase 2: CAPTCHA

The last step in the scheme involves a test which requires
human attention. A solution for this problem of the attacker
are underground CAPTCHA solving services [39], [56]. These
are services on the web which offer to solve the provided

CAPTCHA by optical character recognition software or by
human workers at around 1$ to 2$ per 1000 CAPTCHAs [4],
[5].

Human attention for a single attacker will be natural to
achieve on a small scale, but preventive in large scale systems.
While it is available for large scale attackers, it is either a
huge factor in cost, if done by themselves or increases the risk
of detection significantly. For botnets, at last, the CAPTCHA
solving services are the most viable route but increases the
cost of operation.

D. Attack Conclusion

All presented steps are restrictive in nature, as they restrict
previously available routes. This limits the possibility of gains
for an attacker by using Pixy, compared to other current
systems.

While we showed that all phases can be broken, all strate-
gies either increase cost, prevent certain kinds of attacks or
increase risk of detection for large scale entities, especially
through the combination of the different phases. This layered
security shows our original goal of making attacks impractical
or noticeably harder.

VI. CONCLUSION

We developed Pixy, a flexible group creation scheme to
prevent Sybil nodes in peer groups. Pixy provides increased
protection from various common attacks by applying a two-
phase scheme. Phase one creates a temporary group based on
group lists and personal trust information to exclude Sybils
and known collaborators. Phase two tests all participants
of the temporary group using a memory timelock puzzle
and a CAPTCHA. The results are aggregated per participant
allowing every user to come to a satisfying conclusion on their
own.

Our first evaluation shows that, while the system is still sus-
ceptible to powerful attackers, many common attack patterns
are not viable when using Pixy. Therefore pixy provides a
clear advantage over the current state of the art.

The design of Pixy is modular so additional puzzles can be
included or existing ones can be removed, e.g., the CAPTCHA
if automation is required. This allows for continuous further
improvements based on recent research.
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